Age Period Cohort Analysis

Author: Yang Yang
Editor: CRC Press
ISBN: 1466507535
Size: 15,10 MB
Format: PDF
Read: 793

Age-Period-Cohort Analysis: New Models, Methods, and Empirical Applications is based on a decade of the authors’ collaborative work in age-period-cohort (APC) analysis. Within a single, consistent HAPC-GLMM statistical modeling framework, the authors synthesize APC models and methods for three research designs: age-by-time period tables of population rates or proportions, repeated cross-section sample surveys, and accelerated longitudinal panel studies. The authors show how the empirical application of the models to various problems leads to many fascinating findings on how outcome variables develop along the age, period, and cohort dimensions. The book makes two essential contributions to quantitative studies of time-related change. Through the introduction of the GLMM framework, it shows how innovative estimation methods and new model specifications can be used to tackle the "model identification problem" that has hampered the development and empirical application of APC analysis. The book also addresses the major criticism against APC analysis by explaining the use of new models within the GLMM framework to uncover mechanisms underlying age patterns and temporal trends. Encompassing both methodological expositions and empirical studies, this book explores the ways in which statistical models, methods, and research designs can be used to open new possibilities for APC analysis. It compares new and existing models and methods and provides useful guidelines on how to conduct APC analysis. For empirical illustrations, the text incorporates examples from a variety of disciplines, such as sociology, demography, and epidemiology. Along with details on empirical analyses, software and programs to estimate the models are available on the book’s web page.

A Practical Guide To Age Period Cohort Analysis

Author: Wenjiang Fu
Editor: CRC Press
ISBN: 1466592664
Size: 17,91 MB
Format: PDF, ePub, Mobi
Read: 663

Age-Period-Cohort analysis has a wide range of applications, from chronic disease incidence and mortality data in public health and epidemiology, to many social events (birth, death, marriage, etc) in social sciences and demography, and most recently investment, healthcare and pension contribution in economics and finance. Although APC analysis has been studied for the past 40 years and a lot of methods have been developed, the identification problem has been a major hurdle in analyzing APC data, where the regression model has multiple estimators, leading to indetermination of parameters and temporal trends. A Practical Guide to Age-Period Cohort Analysis: The Identification Problem and Beyond provides practitioners a guide to using APC models as well as offers graduate students and researchers an overview of the current methods for APC analysis while clarifying the confusion of the identification problem by explaining why some methods address the problem well while others do not. Features · Gives a comprehensive and in-depth review of models and methods in APC analysis. · Provides an in-depth explanation of the identification problem and statistical approaches to addressing the problem and clarifying the confusion. · Utilizes real data sets to illustrate different data issues that have not been addressed in the literature, including unequal intervals in age and period groups, etc. Contains step-by-step modeling instruction and R programs to demonstrate how to conduct APC analysis and how to conduct prediction for the future Reflects the most recent development in APC modeling and analysis including the intrinsic estimator Wenjiang Fu is a professor of statistics at the University of Houston. Professor Fu’s research interests include modeling big data, applied statistics research in health and human genome studies, and analysis of complex economic and social science data.

Age Period Cohort Models

Author: Robert O'Brien
Editor: CRC Press
ISBN: 1466551542
Size: 18,13 MB
Format: PDF
Read: 506

Develop a Deep Understanding of the Statistical Issues of APC Analysis Age–Period–Cohort Models: Approaches and Analyses with Aggregate Data presents an introduction to the problems and strategies for modeling age, period, and cohort (APC) effects for aggregate-level data. These strategies include constrained estimation, the use of age and/or period and/or cohort characteristics, estimable functions, variance decomposition, and a new technique called the s-constraint approach. See How Common Methods Are Related to Each Other After a general and wide-ranging introductory chapter, the book explains the identification problem from algebraic and geometric perspectives and discusses constrained regression. It then covers important strategies that provide information that does not directly depend on the constraints used to identify the APC model. The final chapter presents a specific empirical example showing that a combination of the approaches can make a compelling case for particular APC effects. Get Answers to Questions about the Relationships of Ages, Periods, and Cohorts to Important Substantive Variables This book incorporates several APC approaches into one resource, emphasizing both their geometry and algebra. This integrated presentation helps researchers effectively judge the strengths and weaknesses of the methods, which should lead to better future research and better interpretation of existing research.

Bayesian Disease Mapping

Author: Andrew B. Lawson
Editor: CRC Press
ISBN: 1351271741
Size: 20,95 MB
Format: PDF
Read: 594

Since the publication of the second edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. In addition to the new material, the book also covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. The target audience for this text is public health specialists, epidemiologists, and biostatisticians who need to work with geo-referenced health data.

Capture Recapture Methods For The Social And Medical Sciences

Author: Dankmar Bohning
Editor: CRC Press
ISBN: 1351647970
Size: 12,45 MB
Format: PDF, Mobi
Read: 480

Capture-recapture methods have been used in biology and ecology for more than 100 years. However, it is only recently that these methods have become popular in the social and medical sciences to estimate the size of elusive populations such as illegal immigrants, illicit drug users, or people with a drinking problem. Capture-Recapture Methods for the Social and Medical Sciences brings together important developments which allow the application of these methods. It has contributions from more than 40 researchers, and is divided into eight parts, including topics such as ratio regression models, capture-recapture meta-analysis, extensions of single and multiple source models, latent variable models and Bayesian approaches. The book is suitable for everyone who is interested in applying capture-recapture methods in the social and medical sciences. Furthermore, it is also of interest to those working with capture-recapture methods in biology and ecology, as there are some important developments covered in the book that also apply to these classical application areas.

Modern Directional Statistics

Author: Christophe Ley
Editor: CRC Press
ISBN: 1351645781
Size: 11,85 MB
Format: PDF, ePub, Docs
Read: 635

Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.

Survival Analysis With Interval Censored Data

Author: Kris Bogaerts
Editor: CRC Press
ISBN: 1351643053
Size: 16,80 MB
Format: PDF, ePub, Mobi
Read: 557

Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society?and editor of?Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the?Statistical Modelling Society, past-president of the?International Society for Clinical Biostatistics,?and fellow of?ISI?and?ASA.

A Life Course Perspective On Health Trajectories And Transitions

Author: Claudine Burton-Jeangros
Editor: Springer
ISBN: 331920484X
Size: 18,49 MB
Format: PDF
Read: 407

This open access book examines health trajectories and health transitions at different stages of the life course, including childhood, adulthood and later life. It provides findings that assess the role of biological and social transitions on health status over time. The essays examine a wide range of health issues, including the consequences of military service on body mass index, childhood obesity and cardiovascular health, socio-economic inequalities in preventive health care use, depression and anxiety during the child rearing period, health trajectories and transitions in people with cystic fibrosis and oral health over the life course. The book addresses theoretical, empirical and methodological issues as well as examines different national contexts, which help to identify factors of vulnerability and potential resources that support resilience available for specific groups and/or populations. Health reflects the ability of individuals to adapt to their social environment. This book analyzes health as a dynamic experience. It examines how different aspects of individual health unfold over time as a result of aging but also in relation to changing socioeconomic conditions. It also offers readers potential insights into public policies that affect the health status of a population.

Society And Economy

Author: Mark Granovetter
Editor: Harvard University Press
ISBN: 0674975219
Size: 17,45 MB
Format: PDF, ePub, Docs
Read: 396

A work of exceptional ambition by the founder of modern economic sociology, this first full account of Mark Granovetter’s ideas stresses that the economy is not a sphere separate from other human activities but is deeply embedded in social relations and subject to the same emotions, ideas, and constraints as religion, science, politics, or law.

Dynamic Demographic Analysis

Author: Robert Schoen
Editor: Springer
ISBN: 3319266039
Size: 20,86 MB
Format: PDF, Kindle
Read: 829

This volume presents state of the art analyses from scholars dealing with a range of demographic topics of current concern, including longevity, mortality and morbidity, migration, and how population composition impacts intergenerational transfer schemes. New approaches are applied to such issues as measuring changes in cohort survivorship in low mortality populations, patterns of mortality improvement at older ages, and the consequences of heterogeneity in the susceptibility to death. Studies examine models of the current status of the HIV/AIDS epidemic, advance present methods for estimating population change in small areas, and strive to disentangle age, period, and cohort effects. In sum, the book addresses key contemporary issues in measuring and modeling dynamic populations, and advances the frontier of dynamic demography.