Introduction To Computational Science

Author: Angela B. Shiflet
Editor: Princeton University Press
ISBN: 140085055X
Size: 20,75 MB
Format: PDF, Mobi
Read: 611
Download

Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors

Essential Cybersecurity Science

Author: Josiah Dykstra
Editor: "O'Reilly Media, Inc."
ISBN: 1491921072
Size: 10,12 MB
Format: PDF, ePub, Docs
Read: 526
Download

If you’re involved in cybersecurity as a software developer, forensic investigator, or network administrator, this practical guide shows you how to apply the scientific method when assessing techniques for protecting your information systems. You’ll learn how to conduct scientific experiments on everyday tools and procedures, whether you’re evaluating corporate security systems, testing your own security product, or looking for bugs in a mobile game. Once author Josiah Dykstra gets you up to speed on the scientific method, he helps you focus on standalone, domain-specific topics, such as cryptography, malware analysis, and system security engineering. The latter chapters include practical case studies that demonstrate how to use available tools to conduct domain-specific scientific experiments. Learn the steps necessary to conduct scientific experiments in cybersecurity Explore fuzzing to test how your software handles various inputs Measure the performance of the Snort intrusion detection system Locate malicious “needles in a haystack” in your network and IT environment Evaluate cryptography design and application in IoT products Conduct an experiment to identify relationships between similar malware binaries Understand system-level security requirements for enterprise networks and web services

Discovering Computer Science

Author: Jessen Havill
Editor: CRC Press
ISBN: 149878674X
Size: 19,21 MB
Format: PDF, Kindle
Read: 416
Download

Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming introduces computational problem solving as a vehicle of discovery in a wide variety of disciplines. With a principles-oriented introduction to computational thinking, the text provides a broader and deeper introduction to computer science than typical introductory programming books. Organized around interdisciplinary problem domains, rather than programming language features, each chapter guides students through increasingly sophisticated algorithmic and programming techniques. The author uses a spiral approach to introduce Python language features in increasingly complex contexts as the book progresses. The text places programming in the context of fundamental computer science principles, such as abstraction, efficiency, and algorithmic techniques, and offers overviews of fundamental topics that are traditionally put off until later courses. The book includes thirty well-developed independent projects that encourage students to explore questions across disciplinary boundaries. Each is motivated by a problem that students can investigate by developing algorithms and implementing them as Python programs. The book's accompanying website — http://discoverCS.denison.edu — includes sample code and data files, pointers for further exploration, errata, and links to Python language references. Containing over 600 homework exercises and over 300 integrated reflection questions, this textbook is appropriate for a first computer science course for computer science majors, an introductory scientific computing course or, at a slower pace, any introductory computer science course.

Molecular Modeling And Simulation An Interdisciplinary Guide

Author: Tamar Schlick
Editor: Springer Science & Business Media
ISBN: 9781441963512
Size: 17,41 MB
Format: PDF, Mobi
Read: 958
Download

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text

Applied Functional Analysis Second Edition

Author: J. Tinsley Oden
Editor: CRC Press
ISBN: 9780849325519
Size: 13,14 MB
Format: PDF, ePub, Docs
Read: 170
Download

Functional analysis-the study of the properties of mathematical functions-is widely used in modern scientific and engineering disciplines, particularly in mathematical modeling and computer simulation. Applied Functional Analysis, the only textbook of its kind, is designed specifically for the graduate student in engineering and science who has little or no training in advanced mathematics. Comprehensive and easy-to-understand, this innovative textbook progresses from the essentials of preparatory mathematics to sophisticated functional analysis. This self-contained presentation requires few mathematical prerequisites and provides students with the fundamental concepts and theorems essential to mathematical analysis and modeling. Applied Functional Analysis combines various principles of mathematics, computer science, engineering, and science, laying the foundation for further specialty work in partial differential equations, approximation theory, numerical mathematics, control theory, mathematical physics, and related subjects. This new treatment of a classic subject outfits engineering and science majors with a graduate-level mathematics standing, otherwise accessible only through regular mathematics studies.

Time Series

Author: Ngai Hang Chan
Editor: John Wiley & Sons
ISBN: 0471461644
Size: 12,92 MB
Format: PDF, ePub, Docs
Read: 99
Download

Elements of Financial Time Series fills a gap in the market in thearea of financial time series analysis by giving both conceptualand practical illustrations. Examples and discussions in the laterchapters of the book make recent developments in time series moreaccessible. Examples from finance are maximized as much as possiblethroughout the book. * Full set of exercises is displayed at the end of eachchapter. * First seven chapters cover standard topics in time series at ahigh-intensity level. * Recent and timely developments in nonstandard time seriestechniques are illustrated with real finance examples indetail. * Examples are systemically illustrated with S-plus with codes anddata available on an associated Web site.

Operational Risk

Author: Harry H. Panjer
Editor: John Wiley & Sons
ISBN: 0470051302
Size: 12,40 MB
Format: PDF, ePub, Docs
Read: 952
Download

Discover how to optimize business strategies from both qualitative and quantitative points of view Operational Risk: Modeling Analytics is organized around the principle that the analysis of operational risk consists, in part, of the collection of data and the building of mathematical models to describe risk. This book is designed to provide risk analysts with a framework of the mathematical models and methods used in the measurement and modeling of operational risk in both the banking and insurance sectors. Beginning with a foundation for operational risk modeling and a focus on the modeling process, the book flows logically to discussion of probabilistic tools for operational risk modeling and statistical methods for calibrating models of operational risk. Exercises are included in chapters involving numerical computations for students' practice and reinforcement of concepts. Written by Harry Panjer, one of the foremost authorities in the world on risk modeling and its effects in business management, this is the first comprehensive book dedicated to the quantitative assessment of operational risk using the tools of probability, statistics, and actuarial science. In addition to providing great detail of the many probabilistic and statistical methods used in operational risk, this book features: * Ample exercises to further elucidate the concepts in the text * Definitive coverage of distribution functions and related concepts * Models for the size of losses * Models for frequency of loss * Aggregate loss modeling * Extreme value modeling * Dependency modeling using copulas * Statistical methods in model selection and calibration Assuming no previous expertise in either operational risk terminology or in mathematical statistics, the text is designed for beginning graduate-level courses on risk and operational management or enterprise risk management. This book is also useful as a reference for practitioners in both enterprise risk management and risk and operational management.

The Association Graph And The Multigraph For Loglinear Models

Author: Harry J. Khamis
Editor: SAGE
ISBN: 1452238952
Size: 16,67 MB
Format: PDF, ePub
Read: 636
Download

The Association Graph and the Multigraph for Loglinear Models will help students, particularly those studying the analysis of categorical data, to develop the ability to evaluate and unravel even the most complex loglinear models without heavy calculations or statistical software. This supplemental text reviews loglinear models, explains the association graph, and introduces the multigraph to students who may have little prior experience of graphical techniques, but have some familiarity with categorical variable modeling. The author presents logical step-by-step techniques from the point of view of the practitioner, focusing on how the technique is applied to contingency table data and how the results are interpreted.

Longitudinal Data Analysis

Author: Donald Hedeker
Editor: John Wiley & Sons
ISBN: 0470036478
Size: 10,51 MB
Format: PDF, Docs
Read: 991
Download

Longitudinal data analysis for biomedical and behavioral sciences This innovative book sets forth and describes methods for the analysis of longitudinaldata, emphasizing applications to problems in the biomedical and behavioral sciences. Reflecting the growing importance and use of longitudinal data across many areas of research, the text is designed to help users of statistics better analyze and understand this type of data. Much of the material from the book grew out of a course taught by Dr. Hedeker on longitudinal data analysis. The material is, therefore, thoroughly classroom tested and includes a number of features designed to help readers better understand and apply the material. Statistical procedures featured within the text include: * Repeated measures analysis of variance * Multivariate analysis of variance for repeated measures * Random-effects regression models (RRM) * Covariance-pattern models * Generalized-estimating equations (GEE) models * Generalizations of RRM and GEE for categorical outcomes Practical in their approach, the authors emphasize the applications of the methods, using real-world examples for illustration. Some syntax examples are provided, although the authors do not generally focus on software in this book. Several datasets and computer syntax examples are posted on this title's companion Web site. The authors intend to keep the syntax examples current as new versions of the software programs emerge. This text is designed for both undergraduate and graduate courses in longitudinal data analysis. Instructors can take advantage of overheads and additional course materials available online for adopters. Applied statisticians in biomedicine and the social sciences can also use the book as a convenient reference.

Stochastic Modelling For Systems Biology Second Edition

Author: Darren J. Wilkinson
Editor: CRC Press
ISBN: 1439837724
Size: 18,45 MB
Format: PDF, Mobi
Read: 422
Download

Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.