Linear Algebra

Author: Richard Bronson
Editor: Academic Press
ISBN: 0123978114
Size: 12,63 MB
Format: PDF, ePub, Mobi
Read: 103
Download

In this appealing and well-written text, Richard Bronson starts with the concrete and computational, and leads the reader to a choice of major applications. The first three chapters address the basics: matrices, vector spaces, and linear transformations. The next three cover eigenvalues, Euclidean inner products, and Jordan canonical forms, offering possibilities that can be tailored to the instructor's taste and to the length of the course. Bronson's approach to computation is modern and algorithmic, and his theory is clean and straightforward. Throughout, the views of the theory presented are broad and balanced and key material is highlighted in the text and summarized at the end of each chapter. The book also includes ample exercises with answers and hints. Prerequisite: One year of calculus is recommended. Introduces deductive reasoning and helps the reader develop a facility with mathematical proofs Provides a balanced approach to computation and theory by offering computational algorithms for finding eigenvalues and eigenvectors Offers excellent exercise sets, ranging from drill to theoretical/challeging along with useful and interesting applications not found in other introductory linear algebra texts

Basic Matrix Algebra With Algorithms And Applications

Author: Robert A. Liebler
Editor: CRC Press
ISBN: 9781584883333
Size: 15,32 MB
Format: PDF
Read: 889
Download

Clear prose, tight organization, and a wealth of examples and computational techniques make Basic Matrix Algebra with Algorithms and Applications an outstanding introduction to linear algebra. The author designed this treatment specifically for freshman majors in mathematical subjects and upper-level students in natural resources, the social sciences, business, or any discipline that eventually requires an understanding of linear models. With extreme pedagogical clarity that avoids abstraction wherever possible, the author emphasizes minimal polynomials and their computation using a Krylov algorithm. The presentation is highly visual and relies heavily on work with a graphing calculator to allow readers to focus on concepts and techniques rather than on tedious arithmetic. Supporting materials, including test preparation Maple worksheets, are available for download from the Internet. This unassuming but insightful and remarkably original treatment is organized into bite-sized, clearly stated objectives. It goes well beyond the LACSG recommendations for a first course while still implementing their philosophy and core material. Classroom tested with great success, it prepares readers well for the more advanced studies their fields ultimately will require.

Linear Algebra For Signal Processing

Author: Adam Bojanczyk
Editor: Springer Science & Business Media
ISBN: 1461242282
Size: 18,54 MB
Format: PDF, Kindle
Read: 939
Download

Signal processing applications have burgeoned in the past decade. During the same time, signal processing techniques have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This trend will continue as many new signal processing applications are opening up in consumer products and communications systems. In particular, signal processing has been making increasingly sophisticated use of linear algebra on both theoretical and algorithmic fronts. This volume gives particular emphasis to exposing broader contexts of the signal processing problems so that the impact of algorithms and hardware can be better understood; it brings together the writings of signal processing engineers, computer engineers, and applied linear algebraists in an exchange of problems, theories, and techniques. This volume will be of interest to both applied mathematicians and engineers.

Numerical Linear Algebra With Applications

Author: William Ford
Editor: Academic Press
ISBN: 0123947847
Size: 15,71 MB
Format: PDF, ePub, Docs
Read: 774
Download

Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra Detailed explanations and examples A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra Examples from engineering and science applications

High Performance Scientific Computing

Author: Michael W. Berry
Editor: Springer Science & Business Media
ISBN: 1447124375
Size: 15,81 MB
Format: PDF, ePub, Docs
Read: 869
Download

This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.

Orthogonal Sets And Polar Methods In Linear Algebra

Author: Enrique Castillo
Editor: John Wiley & Sons
ISBN: 9780471328896
Size: 12,47 MB
Format: PDF, ePub
Read: 963
Download

A unique, applied approach to problem solving in linear algebra Departing from the standard methods of analysis, this unique book presents methodologies and algorithms based on the concept of orthogonality and demonstrates their application to both standard and novel problems in linear algebra. Covering basic theory of linear systems, linear inequalities, and linear programming, it focuses on elegant, computationally simple solutions to real-world physical, economic, and engineering problems. The authors clearly explain the reasons behind the analysis of different structures and concepts and use numerous illustrative examples to correlate the mathematical models to the reality they represent. Readers are given precise guidelines for: * Checking the equivalence of two systems * Solving a system in certain selected variables * Modifying systems of equations * Solving linear systems of inequalities * Using the new exterior point method * Modifying a linear programming problem With few prerequisites, but with plenty of figures and tables, end-of-chapter exercises as well as Java and Mathematica programs available from the authors' Web site, this is an invaluable text/reference for mathematicians, engineers, applied scientists, and graduate students in mathematics.

Matrix Methods In Data Mining And Pattern Recognition

Author: Lars Elden
Editor: SIAM
ISBN: 0898716268
Size: 17,89 MB
Format: PDF, ePub, Mobi
Read: 419
Download

Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Computer Vision

Author: Richard Szeliski
Editor: Springer Science & Business Media
ISBN: 9781848829350
Size: 11,16 MB
Format: PDF, ePub
Read: 610
Download

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Algorithms For Large Scale Linear Algebraic Systems

Author: Gabriel Winter Althaus
Editor: Boom Koninklijke Uitgevers
ISBN: 9780792349754
Size: 11,57 MB
Format: PDF, ePub, Docs
Read: 533
Download

Proceedings of the NATO Advanced Study Institute on Algorithms for Large Scale Linear Algebraic Systems: State of the Art and Applications in Science and Engineering, Gran Canaria, Spain, June 23-July 6, 1996

Numerical Linear Algebra Digital Signal Processing And Parallel Algorithms

Author: Gene H. Golub
Editor: Springer Science & Business Media
ISBN: 3642755364
Size: 13,80 MB
Format: PDF, Mobi
Read: 240
Download

Numerical linear algebra, digital signal processing, and parallel algorithms are three disciplines with a great deal of activity in the last few years. The interaction between them has been growing to a level that merits an Advanced Study Institute dedicated to the three areas together. This volume gives an account of the main results in this interdisciplinary field. The following topics emerged as major themes of the meeting: - Singular value and eigenvalue decompositions, including applications, - Toeplitz matrices, including special algorithms and architectures, - Recursive least squares in linear algebra, digital signal processing and control, - Updating and downdating techniques in linear algebra and signal processing, - Stability and sensitivity analysis of special recursive least squares problems, - Special architectures for linear algebra and signal processing. This book contains tutorials on these topics given by leading scientists in each of the three areas. A consider- able number of new research results are presented in contributed papers. The tutorials and papers will be of value to anyone interested in the three disciplines.