Modern Crystallography

Author: A a Chernov
Editor:
ISBN: 9783540115168
Size: 14,38 MB
Format: PDF, ePub, Mobi
Read: 427
Download


Modern Crystallography Iii

Author: A.A. Chernov
Editor: Springer Science & Business Media
ISBN: 3642818358
Size: 15,38 MB
Format: PDF, ePub, Docs
Read: 739
Download

Early in this century, the newly discovered x-ray diffraction by crystals made a complete change in crystallography and in the whole science of the atomic structure of matter, thus giving a new impetus to the development of solid-state physics. Crystallographic methods, pri marily x-ray diffraction analysis, penetrated into materials sciences, mol ecular physics, and chemistry, and also into many other branches of science. Later, electron and neutron diffraction structure analyses be came important since they not only complement x-ray data, but also supply new information on the atomic and the real structure of crystals. Electron microscopy and other modern methods of investigating mat ter-optical, electronic paramagnetic, nuclear magnetic, and other res onance techniques-yield a large amount of information on the atomic, electronic, and real crystal structures. Crystal physics has also undergone vigorous development. Many re markable phenomena have been discovered in crystals and then found various practical applications. Other important factors promoting the development of crystallog raphy were the elaboration of the theory of crystal growth (which brought crystallography closer to thermodynamics and physical chem istry) and the development of the various methods of growing synthetic crystals dictated by practical needs. Man-made crystals became increas ingly important for physical investigations, and they rapidly invaded technology. The production . of synthetic crystals made a tremendous impact on the traditional branches: the mechanical treatment of mate rials, precision instrument making, and the jewelry industry.

Multiple Diffraction Of X Rays In Crystals

Author: Chung In-Hang
Editor: Springer Science & Business Media
ISBN: 3642821669
Size: 11,24 MB
Format: PDF
Read: 290
Download

The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.

Comprehensive Semiconductor Science And Technology

Author:
Editor: Newnes
ISBN: 0080932282
Size: 20,62 MB
Format: PDF, Kindle
Read: 919
Download

Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts

High Magnetic Fields In Semiconductor Physics Iii

Author: Gottfried Landwehr
Editor: Springer Science & Business Media
ISBN: 3642844081
Size: 14,43 MB
Format: PDF, ePub, Docs
Read: 980
Download

High magnetic fields have, for a long time, been an important tool in the investigation of the electronic structure of semiconductors. In recent yearsstudies of heterostructures and superlattices have predominated, and this emphasis is reflected in these proceedings. The contributions concentrate on experiments using transport and optical methods, but recent theoretical developments are also covered. Special attention is paid to the quantum Hall effect, including the problem of edge currents, the influence of contacts, and Wigner condensation in the fractional quantum Hall effect regime. The 27 invited contributions by renowned expertsprovide an excellent survey of the field that is complemented by numerous contributed papers.

Modern Theory Of Crystal Growth I

Author: A.A. Chernov
Editor: Springer Science & Business Media
ISBN: 3642689388
Size: 20,94 MB
Format: PDF, ePub
Read: 688
Download

Our understanding of the basic processes of crystal growth has meanwhile reached the level of maturity at least in the phenomenological concepts. This concerns for example the growth of pure crystals from a low-density nutrient phase like vapor or dilute solution with various aspects of pattern formation like spiral and layer growth, facetting and roughening, and the stability of smooth macroscopic shapes, as well as basic mechanisms of impurity incorporation in melt growth of (in this sense) simple materials like silicon or organic model substances. In parallel the experimental techniques to quantitatively ana lyze the various growth mechanisms have also reached a high level of reproducibility and precision, giving reliable tests on theoretical predictions. These basic concepts and appli cations to experiments have been recently reviewed by one of us (A. A. C. ) in "Modern Crystallography III. Crystal Growth" (Springer Series on Solid State Sciences, 1983). It has to be emphasized, however, that for practical applications we are still unable to quantitatively calculate many important parameters like kinetic coefficients from first principles. For mixed systems such as complex oxides, solutions and systems with chemi cal reactions, our degree of understanding is even lower. As a few examples for present achievements we note that experiments with vapour and molecular beam condensation of alkali halides confirmed the qualitatively predicted mechanisms of screw dislocations and two-dimensional nucleation for layer-growth.

Point Defects In Semiconductors Ii

Author: J. Bourgoin
Editor: Springer Science & Business Media
ISBN: 3642818323
Size: 15,28 MB
Format: PDF, ePub, Mobi
Read: 298
Download

In introductory solid-state physics texts we are introduced to the concept of a perfect crystalline solid with every atom in its proper place. This is a convenient first step in developing the concept of electronic band struc ture, and from it deducing the general electronic and optical properties of crystalline solids. However, for the student who does not proceed further, such an idealization can be grossly misleading. A perfect crystal does not exist. There are always defects. It was recognized very early in the study of solids that these defects often have a profound effect on the real physical properties of a solid. As a result, a major part of scientific research in solid-state physics has,' from the early studies of "color centers" in alkali halides to the present vigorous investigations of deep levels in semiconductors, been devoted to the study of defects. We now know that in actual fact, most of the interest ing and important properties of solids-electrical, optical, mechanical- are determined not so much by the properties of the perfect crystal as by its im perfections.

Site Symmetry In Crystals

Author: Robert Evarestov
Editor: Springer Science & Business Media
ISBN: 3642604889
Size: 20,30 MB
Format: PDF, ePub, Docs
Read: 703
Download

Site Symmetry in Crystals is the first comprehensive account of the group-theoretical aspects of the site (local) symmetry approach to the study of crystalline solids. The efficiency of this approach, which is based on the concepts of simple induced and band representations of space groups, is demonstrated by considering newly developed applications to electron surface states, point defects, symmetry analysis in lattice dynamics, the theory of second-order phase transitions, and magnetically ordered and non-rigid crystals. Tables of simple induced respresentations are given for the 24 most common space groups, allowing the rapid analysis of electron and phonon states in complex crystals with many atoms in the unit cell.

Crystal Growth For Beginners Fundamentals Of Nucleation Crystal Growth And Epitaxy Third Edition

Author: Markov Ivan Vesselinov
Editor: World Scientific
ISBN: 981314386X
Size: 19,84 MB
Format: PDF, ePub, Docs
Read: 387
Download

The processes of new phase formation and growth are of fundamental importance in numerous rapidly developing scientific fields such as modern materials science, micro- and optoelectronics, and environmental science. Crystal Growth for Beginners combines the depth of information in monographs, with the thorough analysis of review papers, and presents the resulting content at a level understandable by beginners in science. The book covers, in practice, all fundamental questions and aspects of nucleation, crystal growth, and epitaxy. This book is a non-eclectic presentation of this interdisciplinary topic in materials science. The third edition brings existing chapters up to date, and includes new chapters on the growth of nanowires by the vapor–liquid–solid mechanism, as well as illustrated short biographical texts about the scientists who introduced the basic ideas and concepts into the fields of nucleation, crystal growth and epitaxy. All formulae and equations are illustrated by examples that are of technological importance. The book presents not only the fundamentals but also the state of the art in the subject. Crystal Growth for Beginners is a valuable reference for both graduate students and researchers in materials science. The reader is required to possess some basic knowledge of mathematics, physics and thermodynamics.

Introduction To Solid State Theory

Author: Otfried Madelung
Editor: Springer Science & Business Media
ISBN: 3642618855
Size: 19,96 MB
Format: PDF, ePub, Mobi
Read: 975
Download

Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.