R For Everyone

Author: Jared P. Lander
Editor: Addison-Wesley Professional
ISBN: 0133257150
Size: 14,80 MB
Format: PDF
Read: 777
Download

Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks. Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES • Exploring R, RStudio, and R packages • Using R for math: variable types, vectors, calling functions, and more • Exploiting data structures, including data.frames, matrices, and lists • Creating attractive, intuitive statistical graphics • Writing user-defined functions • Controlling program flow with if, ifelse, and complex checks • Improving program efficiency with group manipulations • Combining and reshaping multiple datasets • Manipulating strings using R’s facilities and regular expressions • Creating normal, binomial, and Poisson probability distributions • Programming basic statistics: mean, standard deviation, and t-tests • Building linear, generalized linear, and nonlinear models • Assessing the quality of models and variable selection • Preventing overfitting, using the Elastic Net and Bayesian methods • Analyzing univariate and multivariate time series data • Grouping data via K-means and hierarchical clustering • Preparing reports, slideshows, and web pages with knitr • Building reusable R packages with devtools and Rcpp • Getting involved with the R global community

Introductory R A Beginner S Guide To Data Visualisation Statistical Analysis And Programming In R

Author: Robert Knell
Editor: Robert Knell
ISBN: 0957597118
Size: 13,50 MB
Format: PDF, Docs
Read: 561
Download

R is now the most widely used statistical software in academic science and it is rapidly expanding into other fields such as finance. R is almost limitlessly flexible and powerful, hence its appeal, but can be very difficult for the novice user. There are no easy pull-down menus, error messages are often cryptic and simple tasks like importing your data or exporting a graph can be difficult and frustrating. Introductory R is written for the novice user who knows a little about statistics but who hasn't yet got to grips with the ways of R. This new edition is completely revised and greatly expanded with new chapters on the basics of descriptive statistics and statistical testing, considerably more information on statistics and six new chapters on programming in R. Topics covered include: A walkthrough of the basics of R's command line interface Data structures including vectors, matrices and data frames R functions and how to use them Expanding your analysis and plotting capacities with add-in R packages A set of simple rules to follow to make sure you import your data properly An introduction to the script editor and advice on workflow A detailed introduction to drawing publication-standard graphs in R How to understand the help files and how to deal with some of the most common errors that you might encounter. Basic descriptive statistics The theory behind statistical testing and how to interpret the output of statistical tests Thorough coverage of the basics of data analysis in R with chapters on using chi-squared tests, t-tests, correlation analysis, regression, ANOVA and general linear models What the assumptions behind the analyses mean and how to test them using diagnostic plots Explanations of the summary tables produced for statistical analyses such as regression and ANOVA Writing your own functions in R Using table operations to manipulate matrices and data frames Using conditional statements and loops in R programmes. Writing longer R programmes. The techniques of statistical analysis in R are illustrated by a series of chapters where experimental and survey data are analysed. There is a strong emphasis on using real data from real scientific research, with all the problems and uncertainty that implies, rather than well-behaved made-up data that give ideal and easy to analyse results.

R For Marketing Research And Analytics

Author: Chris Chapman
Editor: Springer
ISBN: 3319144367
Size: 15,45 MB
Format: PDF, ePub, Docs
Read: 748
Download

This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.