Structural Biology Using Electrons And X Rays

Author: Michael F Moody
Editor: Academic Press
ISBN: 9780080919454
Size: 13,73 MB
Format: PDF, Kindle
Read: 830
Download

Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book examines the development of nuclear magnetic resonance (NMR), which allows the calculation of the images of a certain protein. Parts 1 to 4 provide the basic information and the applications of Fourier transforms, as well as the different methods used for image processing using X-ray crystallography and the analysis of electron micrographs. Part 5 focuses entirely on the mathematical aspect of Fourier transforms. In addition, the book examines detailed structural analyses of a specimen’s symmetry (i.e., crystals, helices, polyhedral viruses and asymmetrical particles). This book is intended for the biologist or biochemist who is interested in different methods and techniques for calculating the images of proteins using nuclear magnetic resonance (NMR). It is also suitable for readers without a background in physical chemistry or mathematics. Emphasis on common principles underlying all diffraction-based methods Thorough grounding in theory requires understanding of only simple algebra Visual representations and explanations of challenging content Mathematical detail offered in short-course form to parallel the text

Introduction To Molecular Biology Genomics And Proteomics For Biomedical Engineers

Author: Robert B. Northrop
Editor: CRC Press
ISBN: 1420061216
Size: 16,25 MB
Format: PDF, ePub
Read: 122
Download

Illustrates the Complex Biochemical Relations that Permit Life to Exist It can be argued that the dawn of the 21st century has emerged as the age focused on molecular biology, which includes all the regulatory mechanisms that make cellular biochemical reaction pathways stable and life possible. For biomedical engineers, this concept is essential to their chosen profession. Introduction to Molecular Biology, Genomics, and Proteomics for Biomedical Engineers hones in on the specialized organic molecules in living organisms and how they interact and react. The book’s sound approach to this intricately complex field makes it an exceptional resource for further exploration into the biochemistry, molecular biology, and genomics fields. It is also beneficial for electrical, chemical, and civil engineers as well as biophysicists with an interest in modeling living systems. This seminal reference includes many helpful tools for self study, including— 143 illustrations, 32 in color, to bolster understanding of complex biochemical relations 20 tables for quick access to precise data 100 key equations Challenging self-study problems within each chapter Conveys Human Progress in the Manipulation of Genomes at the Molecular Level In response to growing global interest in biotechnology, this valuable text sheds light on the evolutionary theories and future trends in genetic medicine and stem cell research. It provides a broader knowledge base on life-permitting complexities, illustrates how to model them quantitatively, and demonstrates how to manipulate them in genomic-based medicine and genetic engineering. Consequently, this book allows for a greater appreciation among of the incredible complexity of the biochemical systems required to sustain life in its many forms. A solutions manual is available for instructors wishing to convert this reference to classroom use.

Textbook Of Structural Biology

Author: Anders Liljas
Editor: World Scientific
ISBN: 9812772073
Size: 12,10 MB
Format: PDF, ePub
Read: 884
Download

A textbook for undergraduate and graduate students in structural biology, chemistry, biochemistry, biology and medicine. It covers various aspects of proteins, nucleic acids and lipids, including the rise and fall of proteins, membranes and gradients, the structural biology of cells, and evolution - the comparative structural biology.

An Introduction To Microscopy By Means Of Light Electrons X Rays Or Ultrasound

Author: Eugene Rochow
Editor: Springer Science & Business Media
ISBN: 1468424548
Size: 14,32 MB
Format: PDF, ePub, Docs
Read: 945
Download

Many people look upon a microscope as a mere instrument(l); to them microscopy is instrumentation. Other people consider a microscope to be simply an aid to the eye; to them microscopy is primarily an expan sion of macroscopy. In actuality, microscopy is both objective and sub jective; it is seeing through an instrument by means of the eye, and more importantly, the brain. The function of the brain is to interpret the eye's image in terms of the object's structure. Thought and experience are required to distinguish structure from artifact. It is said that Galileo (1564-1642) had his associates first look through his telescope microscope at very familiar objects to convince them that the image was a true representation of the object. Then he would have them proceed to hitherto unknown worlds too far or too small to be seen with the un aided eye. Since Galileo's time, light microscopes have been improved so much that performance is now very close to theoretical limits. Electron microscopes have been developed in the last four decades to exhibit thousands of times the resolving power of the light microscope. Through the news media everyone is made aware of the marvelous microscopical accomplishments in imagery. However, little or no hint is given as to what parts of the image are derived from the specimen itself and what parts are from the instrumentation, to say nothing of the changes made during preparation of the specimen.

Introduction To The Physics And Chemistry Of Materials

Author: Robert J. Naumann
Editor: CRC Press
ISBN: 1420061348
Size: 10,90 MB
Format: PDF
Read: 292
Download

Discusses the Structure and Properties of Materials and How These Materials Are Used in Diverse Applications Building on undergraduate students’ backgrounds in mathematics, science, and engineering, Introduction to the Physics and Chemistry of Materials provides the foundation needed for more advanced work in materials science. Ideal for a two-semester course, the text focuses on chemical bonding, crystal structure, mechanical properties, phase transformations, and materials processing for the first semester. The material for the second semester covers thermal, electronic, photonic, optical, and magnetic properties of materials. Requiring no prior experience in modern physics and quantum mechanics, the book introduces quantum concepts and wave mechanics through a simple derivation of the Schrödinger equation, the electron-in-a-box problem, and the wave functions of the hydrogen atom. The author also presents a historical perspective on the development of the materials science field. He discusses the Bose–Einstein, Maxwell–Boltzmann, Planck, and Fermi–Dirac distribution functions, before moving on to the various properties and applications of materials. With detailed derivations of important equations, this applications-oriented text examines the structure and properties of materials, such as heavy metal glasses and superconductors. It also explores recent developments in organics electronics, polymer light-emitting diodes, superconductivity, and more.

Crystals X Rays And Proteins

Author: Dennis Sherwood
Editor: Oxford University Press
ISBN: 019955904X
Size: 11,77 MB
Format: PDF, Mobi
Read: 102
Download

Update to: Crystals, X-rays, and proteins / Dennis Sherwood. 1976.

Electron Crystallography

Author: D. Dorset
Editor: Springer Science & Business Media
ISBN: 9401589712
Size: 16,74 MB
Format: PDF, ePub
Read: 747
Download

The re-emergent field of quantitative electron crystallography is described by some of its most eminent practitioners. They describe the theoretical framework for electron scattering, specimen preparation, experimental techniques for optimum data collection, the methodology of structure analysis and refinement, and a range of applications to inorganic materials (including minerals), linear polymers, small organic molecules (including those used in nonlinear optical devices), incommensurately modulated structures (including superconductors), alloys, and integral membrane proteins. The connection between electron crystallography and X-ray crystallography is clearly defined, especially in the utilisation of the latest methods for direct determination of crystallographic phases, as well as the unique role of image analysis of high-resolution electron micrographs for phase determination. Even the aspect of multiple beam dynamic diffraction (once dreaded because it was thought to preclude ab initio analysis) is considered as a beneficial aid for symmetry determination as well as the elucidation of crystallographic phases, and as a criterion for monitoring the progress of structure refinement. Whereas other texts have hitherto preferentially dealt with the analysis of electron diffraction and image data from thin organic materials, this work discusses - with considerable optimism - the prospects of looking at `harder' materials, composed of heavier atoms. Audience: Could be used with profit as a graduate-level course on electron crystallography. Researchers in the area will find a statement of current progress in the field.

Molecular Biology Of The Cell

Author: Bruce Alberts
Editor: Garland Science
ISBN: 1317563743
Size: 12,42 MB
Format: PDF, ePub
Read: 518
Download

As the amount of information in biology expands dramatically, it becomes increasingly important for textbooks to distill the vast amount of scientific knowledge into concise principles and enduring concepts.As with previous editions, Molecular Biology of the Cell, Sixth Edition accomplishes this goal with clear writing and beautiful illustrations. The Sixth Edition has been extensively revised and updated with the latest research in the field of cell biology, and it provides an exceptional framework for teaching and learning. The entire illustration program has been greatly enhanced.Protein structures better illustrate structure–function relationships, icons are simpler and more consistent within and between chapters, and micrographs have been refreshed and updated with newer, clearer, or better images. As a new feature, each chapter now contains intriguing openended questions highlighting “What We Don’t Know,” introducing students to challenging areas of future research. Updated end-of-chapter problems reflect new research discussed in the text, and these problems have been expanded to all chapters by adding questions on developmental biology, tissues and stem cells, pathogens, and the immune system.

Methods In Molecular Biophysics

Author: Nathan R. Zaccai
Editor: Cambridge University Press
ISBN: 1108508804
Size: 16,56 MB
Format: PDF, Docs
Read: 563
Download

Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology. All key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists and those with medical backgrounds. The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.

Outline Of Crystallography For Biologists

Author: David Blow
Editor: Oxford University Press on Demand
ISBN: 0198510519
Size: 19,19 MB
Format: PDF, Docs
Read: 457
Download

X-ray crystallography is the main method used to determine the structure of biological molecules. X-ray crystallography is explained without maths and reading this text allows biologists to assess the quality and accuracy of biological structures.