Thermodynamics Of Crystalline States

Author: Minoru Fujimoto
Editor: Springer Science & Business Media
ISBN: 1461450853
Size: 18,58 MB
Format: PDF, Docs
Read: 196

Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on mesoscopic phenomena in solid states, constituting a basic subject in condensed matter physics. While this book serves as a guide for advanced students in physics and material science, it can also be useful as a reference for all professionals in related fields. Minoru Fujimoto is author of Physics of Classical Electromagnetism (Springer, 2007) and The Physics of Structural Phase Transitions (Springer, 2005).

The Vitreous State

Author: Ivan S. Gutzow
Editor: Springer Science & Business Media
ISBN: 3662031876
Size: 14,51 MB
Format: PDF, Kindle
Read: 949

The present book is devoted to problems of a physically important state of condensed matter - the vitreous state. We tried to summarize here the experimental evidence and the different theoretical approaches - structural, thermodynamic and those of statistical physics - connected with the formation, the kinetic stability and with the general nature of glasses as a particular physical state. In addition, a summary is given on the information available concerning proces ses of nucleation and crystallization of glass-forming systems, on methods of preventing or, in contrast, catalyzing crystallization in vitrifying liquids, on the kinetics of nucleation, the modes of crystal growth in undercooled melts and the devitrification of glasses. It was our aim to summarize in the present volume the basic principles and the most significant developments of a newly emerging science - glass science - and to show that, at least, in principle, any substance can exist in the vitreous state. Moreover, we have tried to demonstrate that the characteristic properties of the vitreous state may be attributed under certain conditions not only to systems with an amorphous structure (like the common glasses) but also to a number of other states of condensed matter including the crystalline one.

Modern Thermodynamics Of Crystalline Processes

Author: Minoru Fujimoto
Editor: CRC Press
ISBN: 9781138626522
Size: 15,92 MB
Format: PDF, ePub
Read: 285

"This book explores modern thermodynamics of crystalline states, through the lens of soliton theory. Right from the start, the book revises traditional theories of these concepts with soliton theory in mind. Although well-established as a mathematical nonlinear physics, this is the first time that a book uses soliton theory to deal with nonlinear processes in crystals, clarifying dynamical aspects logically, as demonstrated for superconductivity in modulated crystals. The book explores the soliton theory of crystalline processes, from irreversible processes in Crystals, to Phase Transitions and Mesoscopic Disorder, Statistical Thermodynamics of Modulated Lattices, and Superconductivity"--

Thermodynamics And Equations Of State For Matter

Author: Vladimir Fortov
Editor: World Scientific
ISBN: 9814749214
Size: 15,78 MB
Format: PDF, ePub, Docs
Read: 347

The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates. Contents:PrefaceIntroductionPhase States of Matter, Their ClassificationEquations of State of Gases and LiquidsQuantum-Mechanical Models of a SolidPlasma ThermodynamicsMonte Carlo and Molecular Dynamics MethodsStatistical Substance ModelDensity Functional MethodPhase TransitionsSemi-Empirical Equations of StateRelativistic Plasma. Wide–Range DescriptionNuclear Transformations Under Strong CompressionQuark–Gluon Plasma and Strange MatterSemi-Empiric Nuclear ModelsBibliography Readership: The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.

Fundamentals Of Classical And Statistical Thermodynamics

Author: Bimalendu N. Roy
Editor: John Wiley & Sons
ISBN: 9780470843130
Size: 10,77 MB
Format: PDF
Read: 862

"Fundamentals of Classical and Statistical Thermodynamics" provides a comprehensive introduction to this pivotal subject. Starting from basics, the book begins with a thorough introduction to the field, providing concise definitions and an overview of thermodynamics and its applications. The book discusses the fundamentals of classical equilibrium thermodynamics, thermal physics, kinetic theory and statistical mechanics. This comprehensive coverage enables the reader to understand not only the interrelationships between these subjects but also encourages an ability to interpret the thermodynamic quantities and laws in terms of statistical mechanics. Beginning with a detailed discussion of the four laws of thermodynamics the text introduces more advanced topics in later chapters, such as applications of the first and second laws, free energy and chemical equilibria, and equilibrium statististical mechanics and applications. Uniquely, this text includes a large number of worked examples throughout, with a range of problems at the end of each chapter and their solutions all at the end of the book. The most fundamental concepts of the subject are emphasised throughout and new derivations of many of the standard formulae have been developed to avoid excessive mathematical rigour. "Fundamentals of Classical and Statistical Thermodynamics: " Provides a comprehensive introduction to the field, covering both classical and statistical thermodynamics. Includes numerous worked examples and end of chapter problems with answers provided at the back of the book. Covers the essentials of the subject combined with cutting-edge material such as non-linear chemical physics, critical phenomena and transport theory. Ensures the necessary mathematics are limited to simple derivatives and integrals. Suitable for all undergraduate students of physics, chemistry, materials science and engineering. Will also be an ideal reference book for those working within science and engineering.

Chemical Thermodynamics Of Nickel

Editor: Elsevier
ISBN: 0080457541
Size: 17,82 MB
Format: PDF
Read: 330

In order to quantitatively predict the chemical reactions that hazardous materials may undergo in the environment, it is necessary to know the relative stabilities of the compounds and complexes that may be found under certain conditions. This type of calculations may be done using consistent chemical thermodynamic data, such as those contained in this book for inorganic compounds and complexes of nickel. * Fully detailed authoritative critical review of literature. * Integrated into a comprehensive and consistent database for waste management applications. * CD ROM version.

Thermodynamic And Kinetic Aspects Of The Vitreous State

Author: Sergei Vladimir Nemilov
Editor: CRC Press
ISBN: 9780849337826
Size: 13,81 MB
Format: PDF, Kindle
Read: 345

This is the first book to logically present the major problems of the vitreous state within the framework of irreversible thermodynamics. Filled with elementary explanations for difficult problems, this easily understood text/reference treats in detail the criteria of glass transition, the peculiarities of relaxing structural parameters, and the Prigogine-Defay ratio. Based on the author's rigorous generalization of the Second Law for non-equilibrium, the book systematizes all known thermodynamic data for glasses and melts. The thermodynamic essence of structural relaxation and memory effects are considered. The viscous flow theories are treated as a constituent of the kinetic description. All theoretical questions are illustrated by comparison of calculations with the experiments for glasses of inorganic and organic nature, with special attention to structural classification. An informative review of modern structural investigations is included. The bibliography follows the history of the main problems from the nineteenth century.

Equilibrium Thermodynamics

Author: Mário J. de Oliveira
Editor: Springer Science & Business Media
ISBN: 3642365493
Size: 15,86 MB
Format: PDF, ePub, Docs
Read: 381

This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This textbook is intended for students in physics and chemistry and provides a unique combination of thorough theoretical explanation and presentation of applications in both areas. Chapter summaries, highlighted essentials and problems with solutions enable a self sustained approach and deepen the knowledge.

Practical Chemical Thermodynamics For Geoscientists

Author: Bruce Fegley
Editor: Academic Press
ISBN: 012251100X
Size: 19,89 MB
Format: PDF, ePub, Mobi
Read: 172

Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem. Strong theoretical foundation and emphasis on applications Numerous worked examples in each chapter Brief historical summaries and biographies of key thermodynamicists-including their fundamental research and discoveries Extensive references to relevant literature

Thermal Analysis Of Micro Nano And Non Crystalline Materials

Author: Jaroslav Šesták
Editor: Springer Science & Business Media
ISBN: 9048131502
Size: 13,63 MB
Format: PDF, ePub, Docs
Read: 169

Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics complements and adds to volume 8 Glassy, Amorphous and Nano-Crystalline Materials by providing a coherent and authoritative overview of cutting-edge themes in this field. In particular, the book focuses on reaction thermodynamics and kinetics applied to solid-state chemistry and thermal physics of various states of materials. Written by an international array of distinguished academics, the book deals with fundamental and historical aspects of phenomenological kinetics, equilibrium background of processes, crystal defects, non-stoichiometry and nano-crystallinity, reduced glass-transition temperatures and glass-forming coefficients, determination of the glass transition by DSC, the role of heat transfer and phase transition in DTA experiments, explanation of DTA/DSC methods used for the estimation of crystal nucleation, structural relaxation and viscosity behaviour in glass and associated relaxation kinetics, influence of preliminary nucleation and coupled phenomenological kinetics, nucleation on both the strongly curved surfaces and nano-particles, crystallization of glassy and amorphous materials including oxides, chalcogenides and metals, non-parametric and fractal description of kinetics, disorder and dimensionality in nano-crystalline diamond, thermal analysis of waste glass batches, amorphous inorganic polysialates and bioactivity of hydroxyl groups as well as reaction kinetics and unconventional glass formability of oxide superconductors. Thermal Analysis of Micro-, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics, and Thermodynamics is a valuable resource to advanced undergraduates, postgraduates, and researches working in the application fields of material thermodynamics, thermal analysis, thermophysical measurements, and calorimetry.