Advances In Neural Networks Isnn 2017

Author: Fengyu Cong
Editor: Springer
ISBN: 3319590812
File Size: 68,68 MB
Format: PDF, ePub, Mobi
Read: 6946
Download

This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.

Advances In Neural Networks Isnn 2017

Author: Fengyu Cong
Editor: Springer
ISBN: 3319590723
File Size: 56,97 MB
Format: PDF, Kindle
Read: 5712
Download

This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.

Advances In Neural Networks Isnn 2019

Author: Huchuan Lu
Editor: Springer
ISBN: 3030227960
File Size: 27,28 MB
Format: PDF
Read: 158
Download

This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.

Recent Advances In Artificial Neural Networks

Author: L. C. Jain
Editor: CRC Press
ISBN: 1351093118
File Size: 25,79 MB
Format: PDF, ePub, Mobi
Read: 3255
Download

Neural networks represent a new generation of information processing paradigms designed to mimic-in a very limited sense-the human brain. They can learn, recall, and generalize from training data, and with their potential applications limited only by the imaginations of scientists and engineers, they are commanding tremendous popularity and research interest. Over the last four decades, researchers have reported a number of neural network paradigms, however, the newest of these have not appeared in book form-until now. Recent Advances in Artificial Neural Networks collects the latest neural network paradigms and reports on their promising new applications. World-renowned experts discuss the use of neural networks in pattern recognition, color induction, classification, cluster detection, and more. Application engineers, scientists, and research students from all disciplines with an interest in considering neural networks for solving real-world problems will find this collection useful.

Advances In Neural Computation Machine Learning And Cognitive Research

Author: Boris Kryzhanovsky
Editor: Springer
ISBN: 9783319882833
File Size: 75,54 MB
Format: PDF, ePub, Docs
Read: 8182
Download

This book describes new theories and applications of artificial neural networks, with a special focus on neural computation, cognitive science and machine learning. It discusses cutting-edge research at the intersection between different fields, from topics such as cognition and behavior, motivation and emotions, to neurocomputing, deep learning, classification and clustering. Further topics include signal processing methods, robotics and neurobionics, and computer vision alike. The book includes selected papers from the XIX International Conference on Neuroinformatics, held on October 2-6, 2017, in Moscow, Russia.

Ecai 2020

Author: G. De Giacomo
Editor: IOS Press
ISBN: 164368101X
File Size: 32,84 MB
Format: PDF, ePub
Read: 952
Download

This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of more than 1,700 submissions was received for ECAI 2020, of which 1,443 were reviewed. Of these, 361 full-papers and 36 highlight papers were accepted (an acceptance rate of 25% for full-papers and 45% for highlight papers). The book is divided into three sections: ECAI full papers; ECAI highlight papers; and PAIS papers. The topics of these papers cover all aspects of AI, including Agent-based and Multi-agent Systems; Computational Intelligence; Constraints and Satisfiability; Games and Virtual Environments; Heuristic Search; Human Aspects in AI; Information Retrieval and Filtering; Knowledge Representation and Reasoning; Machine Learning; Multidisciplinary Topics and Applications; Natural Language Processing; Planning and Scheduling; Robotics; Safe, Explainable, and Trustworthy AI; Semantic Technologies; Uncertainty in AI; and Vision. The book will be of interest to all those whose work involves the use of AI technology.

Advances In Neural Networks Isnn

Author:
Editor:
ISBN:
File Size: 19,70 MB
Format: PDF, Kindle
Read: 5368
Download


Social Media Analytics For User Behavior Modeling

Author: Arun Reddy Nelakurthi
Editor: CRC Press
ISBN: 1000025365
File Size: 30,31 MB
Format: PDF, Kindle
Read: 1623
Download

In recent years social media has gained significant popularity and has become an essential medium of communication. Such user-generated content provides an excellent scenario for applying the metaphor of mining any information. Transfer learning is a research problem in machine learning that focuses on leveraging the knowledge gained while solving one problem and applying it to a different, but related problem. Features: Offers novel frameworks to study user behavior and for addressing and explaining task heterogeneity Presents a detailed study of existing research Provides convergence and complexity analysis of the frameworks Includes algorithms to implement the proposed research work Covers extensive empirical analysis Social Media Analytics for User Behavior Modeling: A Task Heterogeneity Perspective is a guide to user behavior modeling in heterogeneous settings and is of great use to the machine learning community.

Advances In Computational Intelligence

Author: Ignacio Rojas
Editor: Springer
ISBN: 3319591533
File Size: 65,60 MB
Format: PDF, ePub, Mobi
Read: 2167
Download

This two-volume set LNCS 10305 and LNCS 10306 constitutes the refereed proceedings of the 14th International Work-Conference on Artificial Neural Networks, IWANN 2017, held in Cadiz, Spain, in June 2017. The 126 revised full papers presented in this double volume were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on Bio-inspired Computing; E-Health and Computational Biology; Human Computer Interaction; Image and Signal Processing; Mathematics for Neural Networks; Self-organizing Networks; Spiking Neurons; Artificial Neural Networks in Industry ANNI'17; Computational Intelligence Tools and Techniques for Biomedical Applications; Assistive Rehabilitation Technology; Computational Intelligence Methods for Time Series; Machine Learning Applied to Vision and Robotics; Human Activity Recognition for Health and Well-Being Applications; Software Testing and Intelligent Systems; Real World Applications of BCI Systems; Machine Learning in Imbalanced Domains; Surveillance and Rescue Systems and Algorithms for Unmanned Aerial Vehicles; End-User Development for Social Robotics; Artificial Intelligence and Games; and Supervised, Non-Supervised, Reinforcement and Statistical Algorithms.

Neural Network Methods In Natural Language Processing

Author: Yoav Goldberg
Editor: Morgan & Claypool Publishers
ISBN: 162705295X
File Size: 34,83 MB
Format: PDF
Read: 3704
Download

Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Artificial Neural Networks And Machine Learning Icann 2017

Author: Alessandra Lintas
Editor: Springer
ISBN: 3319686003
File Size: 27,62 MB
Format: PDF, Docs
Read: 5905
Download

The two volume set, LNCS 10613 and 10614, constitutes the proceedings of then 26th International Conference on Artificial Neural Networks, ICANN 2017, held in Alghero, Italy, in September 2017. The 128 full papers included in this volume were carefully reviewed and selected from 270 submissions. They were organized in topical sections named: From Perception to Action; From Neurons to Networks; Brain Imaging; Recurrent Neural Networks; Neuromorphic Hardware; Brain Topology and Dynamics; Neural Networks Meet Natural and Environmental Sciences; Convolutional Neural Networks; Games and Strategy; Representation and Classification; Clustering; Learning from Data Streams and Time Series; Image Processing and Medical Applications; Advances in Machine Learning. There are 63 short paper abstracts that are included in the back matter of the volume.

Exploring Neural Networks With C

Author: Ryszard Tadeusiewicz
Editor: CRC Press
ISBN: 1482233401
File Size: 47,45 MB
Format: PDF, Kindle
Read: 933
Download

The utility of artificial neural network models lies in the fact that they can be used to infer functions from observations—making them especially useful in applications where the complexity of data or tasks makes the design of such functions by hand impractical. Exploring Neural Networks with C# presents the important properties of neural networks—while keeping the complex mathematics to a minimum. Explaining how to build and use neural networks, it presents complicated information about neural networks structure, functioning, and learning in a manner that is easy to understand. Taking a "learn by doing" approach, the book is filled with illustrations to guide you through the mystery of neural networks. Examples of experiments are provided in the text to encourage individual research. Online access to C# programs is also provided to help you discover the properties of neural networks. Following the procedures and using the programs included with the book will allow you to learn how to work with neural networks and evaluate your progress. You can download the programs as both executable applications and C# source code from http://home.agh.edu.pl/~tad//index.php?page=programy&lang=en

Neural Networks With R

Author: Giuseppe Ciaburro
Editor: Packt Publishing Ltd
ISBN: 1788399412
File Size: 38,20 MB
Format: PDF
Read: 9294
Download

Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Engineering Applications Of Neural Networks

Author: Giacomo Boracchi
Editor: Springer
ISBN: 3319651722
File Size: 26,48 MB
Format: PDF, ePub, Docs
Read: 8290
Download

This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, Greece, in August 2017. The 40 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 83 submissions. The papers cover the topics of deep learning, convolutional neural networks, image processing, pattern recognition, recommendation systems, machine learning, and applications of Artificial Neural Networks (ANN) applications in engineering, 5G telecommunication networks, and audio signal processing. The volume also includes papers presented at the 6th Mining Humanistic Data Workshop (MHDW 2017) and the 2nd Workshop on 5G-Putting Intelligence to the Network Edge (5G-PINE).

Deep Learning And Dynamic Neural Networks With Matlab

Author: Perez C.
Editor: Createspace Independent Publishing Platform
ISBN: 9781974063505
File Size: 44,68 MB
Format: PDF, Mobi
Read: 4319
Download

Deep learning is a branch of machine learning that teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. Deep learning is especially suited for image recognition, which is important for solving problems such as facial recognition, motion detection, and many advanced driver assistance technologies such as autonomous driving, lane detection, pedestrian detection, and autonomous parking. Neural Network Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks. The Neural Network Toolbox software uses the network object to store all of the information that defines a neural network. After a neural network has been created, it needs to be configured and then trained. Configuration involves arranging the network so that it is compatible with the problem you want to solve, as defined by sample data. After the network has been configured, the adjustable network parameters (called weights and biases) need to be tuned, so that the network performance is optimized. This tuning process is referred to as training the network. Configuration and training require that the network be provided with example data. This topic shows how to format the data for presentation to the network. It also explains network configuration and the two forms of network training: incremental training and batch training. Neural networks can be classified into dynamic and static categories. Static (feedforward) networks have no feedback elements and contain no delays; the output is calculated directly from the input through feedforward connections. In dynamic networks, the output depends not only on the current input to the network, but also on the current or previous inputs, outputs, or states of the network. This book develops the following topics: - "Workflow for Neural Network Design" - "Neural Network Architectures" - "Deep Learning in MATLAB" - "Deep Network Using Autoencoders" - "Convolutional Neural Networks" - "Multilayer Neural Networks" - "Dynamic Neural Networks" - "Time Series Neural Networks" - "Multistep Neural Network Prediction"

Neural Network Programming With Java

Author: Fabio M. Soares
Editor: Packt Publishing Ltd
ISBN: 1787122972
File Size: 36,92 MB
Format: PDF, Mobi
Read: 2576
Download

Create and unleash the power of neural networks by implementing professional Java code About This Book Learn to build amazing projects using neural networks including forecasting the weather and pattern recognition Explore the Java multi-platform feature to run your personal neural networks everywhere This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This book is for Java developers who want to know how to develop smarter applications using the power of neural networks. Those who deal with a lot of complex data and want to use it efficiently in their day-to-day apps will find this book quite useful. Some basic experience with statistical computations is expected. What You Will Learn Develop an understanding of neural networks and how they can be fitted Explore the learning process of neural networks Build neural network applications with Java using hands-on examples Discover the power of neural network's unsupervised learning process to extract the intrinsic knowledge hidden behind the data Apply the code generated in practical examples, including weather forecasting and pattern recognition Understand how to make the best choice of learning parameters to ensure you have a more effective application Select and split data sets into training, test, and validation, and explore validation strategies In Detail Want to discover the current state-of-art in the field of neural networks that will let you understand and design new strategies to apply to more complex problems? This book takes you on a complete walkthrough of the process of developing basic to advanced practical examples based on neural networks with Java, giving you everything you need to stand out. You will first learn the basics of neural networks and their process of learning. We then focus on what Perceptrons are and their features. Next, you will implement self-organizing maps using practical examples. Further on, you will learn about some of the applications that are presented in this book such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning, and characters recognition (OCR). Finally, you will learn methods to optimize and adapt neural networks in real time. All the examples generated in the book are provided in the form of illustrative source code, which merges object-oriented programming (OOP) concepts and neural network features to enhance your learning experience. Style and approach This book takes you on a steady learning curve, teaching you the important concepts while being rich in examples. You'll be able to relate to the examples in the book while implementing neural networks in your day-to-day applications.

Deep Learning And Convolutional Neural Networks For Medical Image Computing

Author: Le Lu
Editor: Springer
ISBN: 331942999X
File Size: 34,42 MB
Format: PDF, ePub
Read: 3904
Download

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Advanced Deep Learning With Python

Author: Ivan Vasilev
Editor: Packt Publishing Ltd
ISBN: 1789952719
File Size: 27,25 MB
Format: PDF, ePub, Mobi
Read: 2363
Download

Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystem Key Features Get to grips with building faster and more robust deep learning architectures Investigate and train convolutional neural network (CNN) models with GPU-accelerated libraries such as TensorFlow and PyTorch Apply deep neural networks (DNNs) to computer vision problems, NLP, and GANs Book Description In order to build robust deep learning systems, you’ll need to understand everything from how neural networks work to training CNN models. In this book, you’ll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You’ll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you’ll focus on variational autoencoders and GANs. You’ll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You’ll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you’ll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you’ll understand how to apply deep learning to autonomous vehicles. By the end of this book, you’ll have mastered key deep learning concepts and the different applications of deep learning models in the real world. What you will learn Cover advanced and state-of-the-art neural network architectures Understand the theory and math behind neural networks Train DNNs and apply them to modern deep learning problems Use CNNs for object detection and image segmentation Implement generative adversarial networks (GANs) and variational autoencoders to generate new images Solve natural language processing (NLP) tasks, such as machine translation, using sequence-to-sequence models Understand DL techniques, such as meta-learning and graph neural networks Who this book is for This book is for data scientists, deep learning engineers and researchers, and AI developers who want to further their knowledge of deep learning and build innovative and unique deep learning projects. Anyone looking to get to grips with advanced use cases and methodologies adopted in the deep learning domain using real-world examples will also find this book useful. Basic understanding of deep learning concepts and working knowledge of the Python programming language is assumed.

Matlab Deep Learning

Author: Phil Kim
Editor: Apress
ISBN: 1484228456
File Size: 34,89 MB
Format: PDF
Read: 7833
Download

Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Deep Learning For Image Processing Applications

Author: D.J. Hemanth
Editor: IOS Press
ISBN: 1614998221
File Size: 50,10 MB
Format: PDF, Kindle
Read: 567
Download

Deep learning and image processing are two areas of great interest to academics and industry professionals alike. The areas of application of these two disciplines range widely, encompassing fields such as medicine, robotics, and security and surveillance. The aim of this book, ‘Deep Learning for Image Processing Applications’, is to offer concepts from these two areas in the same platform, and the book brings together the shared ideas of professionals from academia and research about problems and solutions relating to the multifaceted aspects of the two disciplines. The first chapter provides an introduction to deep learning, and serves as the basis for much of what follows in the subsequent chapters, which cover subjects including: the application of deep neural networks for image classification; hand gesture recognition in robotics; deep learning techniques for image retrieval; disease detection using deep learning techniques; and the comparative analysis of deep data and big data. The book will be of interest to all those whose work involves the use of deep learning and image processing techniques.