## Algebraic Topology

**Author**: Allen Hatcher

**Editor:**Cambridge University Press

**ISBN:**9780521795401

**Size**: 20,34 MB

**Format:**PDF, ePub, Mobi

**Read:**717

An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.

## Algebraic Topology

**Author**: Edwin H. Spanier

**Editor:**Springer Science & Business Media

**ISBN:**1468493221

**Size**: 20,54 MB

**Format:**PDF, ePub, Docs

**Read:**493

This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.

## Algebraic Topology

**Author**: C. R. F. Maunder

**Editor:**Courier Corporation

**ISBN:**9780486691312

**Size**: 18,32 MB

**Format:**PDF, Docs

**Read:**653

Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.

## Recent Developments In Algebraic Topology

**Author**: Samuel Gitler

**Editor:**American Mathematical Soc.

**ISBN:**0821836765

**Size**: 12,67 MB

**Format:**PDF

**Read:**717

This book is an excellent illustration of the versatility of Algebraic Topology interacting with other areas in Mathematics and Physics. Topics discussed in this volume range from classical Differential Topology and Homotopy Theory (Kervaire invariant one problem) to more recent lines of research such as Topological Quantum Field Theory (string theory). Likewise, alternative viewpoints on classical problems in Global Analysis and Dynamical Systems are developed (a spectral sequence approach to normal form theory). This collection of papers is based on talks at the conference on the occasion of Sam Gitler's 70th birthday (December, 2003). The variety of topics covered in this book reflects the many areas where Sam Gitler's contributions have had an impact.

## An Introduction To Algebraic Topology

**Author**: Joseph J. Rotman

**Editor:**Springer Science & Business Media

**ISBN:**1461245761

**Size**: 17,14 MB

**Format:**PDF, Mobi

**Read:**973

A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.

## A Basic Course In Algebraic Topology

**Author**: William S. Massey

**Editor:**Springer

**ISBN:**1493990632

**Size**: 19,47 MB

**Format:**PDF, Docs

**Read:**724

This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.

## Algebraic Topology

**Author**: Tammo tom Dieck

**Editor:**European Mathematical Society

**ISBN:**9783037190487

**Size**: 10,64 MB

**Format:**PDF, ePub, Mobi

**Read:**895

This book is written as a textbook on algebraic topology. The first part covers the material for two introductory courses about homotopy and homology. The second part presents more advanced applications and concepts (duality, characteristic classes, homotopy groups of spheres, bordism). The author recommends starting an introductory course with homotopy theory. For this purpose, classical results are presented with new elementary proofs. Alternatively, one could start more traditionally with singular and axiomatic homology. Additional chapters are devoted to the geometry of manifolds, cell complexes and fibre bundles. A special feature is the rich supply of nearly 500 exercises and problems. Several sections include topics which have not appeared before in textbooks as well as simplified proofs for some important results. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (master's) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.

## Algebraic Topology

**Author**: William Fulton

**Editor:**Springer Science & Business Media

**ISBN:**1461241804

**Size**: 13,80 MB

**Format:**PDF, ePub

**Read:**549

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

## Algebraic Topology

**Author**: Satya Deo

**Editor:**Springer

**ISBN:**9811087342

**Size**: 14,64 MB

**Format:**PDF, ePub, Mobi

**Read:**630

This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes challenging, for the reader to provoke their curiosity for problem-solving.

## Lectures On Algebraic Topology

**Author**: Sergeĭ Vladimirovich Matveev

**Editor:**European Mathematical Society

**ISBN:**9783037190234

**Size**: 20,32 MB

**Format:**PDF, ePub

**Read:**594

Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.