Analytics At Work

Author: Thomas H. Davenport
Editor: Harvard Business Press
ISBN: 1422177696
Size: 13,59 MB
Format: PDF, Kindle
Read: 873
Download

As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical.

Big Data At Work

Author: Thomas Davenport
Editor: Harvard Business Review Press
ISBN: 1422168174
Size: 15,85 MB
Format: PDF, ePub
Read: 800
Download

Go ahead, be skeptical about big data. The author was—at first. When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind. Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold. This book will help you understand: • Why big data is important to you and your organization • What technology you need to manage it • How big data could change your job, your company, and your industry • How to hire, rent, or develop the kinds of people who make big data work • The key success factors in implementing any big data project • How big data is leading to a new approach to managing analytics With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.

Enterprise Analytics

Author: Thomas H. Davenport
Editor: FT Press
ISBN: 0133039463
Size: 13,86 MB
Format: PDF, Docs
Read: 777
Download

Normal 0 false false false MicrosoftInternetExplorer4 The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.

Analytics And Big Data The Davenport Collection 6 Items

Author: Thomas H. Davenport
Editor: Harvard Business Review Press
ISBN: 1625277741
Size: 15,46 MB
Format: PDF, Docs
Read: 397
Download

The Analytics and Big Data collection offers a “greatest hits” digital compilation of ideas from world-renowned thought leader Thomas Davenport, who helped popularize the terms analytics and big data in the workplace. An agile and prolific thinker, Davenport has written or coauthored more than a dozen bestselling books. Several of these titles are offered together for the first time in this curated digital bundle, including: Big Data at Work, Competing on Analytics, Analytics at Work, and Keeping Up with the Quants. The collection also includes Davenport’s popular Harvard Business Review articles, “Data Scientist: The Sexiest Job of the 21st Century” (2012) and “Analytics 3.0” (2013). Combined, these works cover all the bases on analytics and big data: what each term means; the ramifications of each from a technical, consumer, and management perspective; and where each can have the biggest impact on your business. Whether you’re an executive, a manager, or a student wanting to learn more, Analytics and Big Data is the most comprehensive collection you’ll find on the ever-growing phenomenon of digital data and analysis—and how you can make this rising business trend work for you. Named one of the ten “Masters of the New Economy” by CIO magazine, Thomas Davenport has helped hundreds of companies revitalize their management practices. He combines his interests in research, teaching, and business management as the President’s Distinguished Professor of Information Technology & Management at Babson College. Davenport has also taught at Harvard Business School, the University of Chicago, Dartmouth’s Tuck School of Business, and the University of Texas at Austin and has directed research centers at Accenture, McKinsey & Company, Ernst & Young, and CSC. He is also an independent Senior Advisor to Deloitte Analytics.

Win With Advanced Business Analytics

Author: Jean-Paul Isson
Editor: John Wiley & Sons
ISBN: 1118370600
Size: 10,16 MB
Format: PDF, Docs
Read: 247
Download

Plain English guidance for strategic business analytics and big data implementation In today's challenging economy, business analytics and big data have become more and more ubiquitous. While some businesses don't even know where to start, others are struggling to move from beyond basic reporting. In some instances management and executives do not see the value of analytics or have a clear understanding of business analytics vision mandate and benefits. Win with Advanced Analytics focuses on integrating multiple types of intelligence, such as web analytics, customer feedback, competitive intelligence, customer behavior, and industry intelligence into your business practice. Provides the essential concept and framework to implement business analytics Written clearly for a nontechnical audience Filled with case studies across a variety of industries Uniquely focuses on integrating multiple types of big data intelligence into your business Companies now operate on a global scale and are inundated with a large volume of data from multiple locations and sources: B2B data, B2C data, traffic data, transactional data, third party vendor data, macroeconomic data, etc. Packed with case studies from multiple countries across a variety of industries, Win with Advanced Analytics provides a comprehensive framework and applications of how to leverage business analytics/big data to outpace the competition.

Human Capital Analytics

Author: Gene Pease
Editor: John Wiley & Sons
ISBN: 1118506995
Size: 17,86 MB
Format: PDF, ePub, Mobi
Read: 355
Download

An insightful look at the implementation of advanced analytics on human capital Human capital analytics, also known as human resources analytics or talent analytics, is the application of sophisticated data mining and business analytics techniques to human resources data. Human Capital Analytics provides an in-depth look at the science of human capital analytics, giving practical examples from case studies of companies applying analytics to their people decisions and providing a framework for using predictive analytics to optimize human capital investments. Written by Gene Pease, Boyce Byerly, and Jac Fitz-enz, widely regarded as the father of human capital Offers practical examples from case studies of companies applying analytics to their people decisions An in-depth discussion of tools needed to do the work, particularly focusing on multivariate analysis The challenge of human resources analytics is to identify what data should be captured and how to use the data to model and predict capabilities so the organization gets an optimal return on investment on its human capital. The goal of human capital analytics is to provide an organization with insights for effectively managing employees so that business goals can be reached quickly and efficiently. Written by human capital analytics specialists Gene Pease, Boyce Byerly, and Jac Fitz-enz, Human Capital Analytics provides essential action steps for implementation of advanced analytics on human capital.

Digital Analytics Primer

Author: Judah Phillips
Editor: FT Press
ISBN: 0133552101
Size: 17,99 MB
Format: PDF
Read: 399
Download

Learn the concepts and methods for creating economic and business value with digital analytics, mobile analytics, web analytics, and market research and social media data. In Digital Analytics Primer , pioneering expert Judah Phillips introduces the concepts, terms, and methods that comprise the science and art of digital analysis for web, site, social, video, and other types of quantitative and qualitative data. Business readers—from new practitioners to experienced executives—who want to understand how digital analytics can be used to reduce costs and increase profitable revenue throughout the business should read this book. Phillips delivers a comprehensive review of the core concepts, vocabulary, and frameworks, including analytical methods and tools that can help you successfully integrate analytical processes, technology, and people into all aspects of business operations. This unbiased and product-independent primer draws from the author's extensive experience doing and managing analytics in this field.

Applied Business Analytics

Author: Nathaniel Lin
Editor: FT Press
ISBN: 0133481530
Size: 15,17 MB
Format: PDF, Docs
Read: 959
Download

Bridge the gap between analytics and execution, and actually translate analytics into better business decision-making! Now that you've collected data and crunched numbers, Applied Business Analytics reveals how to fully apply the information and knowledge you've gleaned from quants and tech teams. Nathaniel Lin explains why "analytics value chains" often break due to organizational and cultural issues, and offers "in the trenches" guidance for overcoming these obstacles. You'll discover why a special breed of "analytics deciders" is indispensable for any organization that seeks to compete on analytics… how to become one of those deciders… and how to identify, foster, support, empower, and reward others to join you. Lin draws on actual cases and examples from his own experience, augmenting them with hands-on examples and exercises to integrate analytics at all levels: from top-level business questions to low-level technical details. Along the way, you'll learn how to bring together analytics team members with widely diverse goals, knowledge, and backgrounds. Coverage includes: How analytical and conventional decision making differ — and the challenging implications How to determine who your analytics deciders are, and ought to be Proven best practices for actually applying analytics to decision-making How to optimize your use of analytics as an analyst, manager, executive, or C-level officer Applied Business Analytics will be invaluable to wide audiences of professionals, decision-makers, and consultants involved in analytics, including Chief Analytics Officers, Chief Data Officers, Chief Scientists, Chief Marketing Officers, Chief Risk Officers, Chief Strategy Officers, VPs of Analytics and/or Big Data, data scientists, business strategists, and line of business executives. It will also be exceptionally useful to students of analytics in any graduate, undergraduate, or certificate program, including candidates for INFORMS certification.

Getting Started With Business Analytics

Author: David Roi Hardoon
Editor: CRC Press
ISBN: 1439896542
Size: 13,39 MB
Format: PDF, ePub, Mobi
Read: 616
Download

Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.

Knowledge Automation

Author: Alan N. Fish
Editor: John Wiley & Sons
ISBN: 1118236793
Size: 11,61 MB
Format: PDF, Mobi
Read: 179
Download

A proven decision management methodology for increased profits and lowered risks Knowledge Automation: How to Implement Decision Management in Business Processes describes a simple but comprehensive methodology for decision management projects, which use business rules and predictive analytics to optimize and automate small, high-volume business decisions. It includes Decision Requirements Analysis (DRA), a new method for taking the crucial first step in any IT project to implement decision management: defining a set of business decisions and identifying all the information—business knowledge and data—required to make those decisions. Describes all the stages in automating business processes, from business process modeling down to the implementation of decision services Addresses how to use business rules and predictive analytics to optimize and automate small, high-volume business decisions Proposes a simple "top-down" method for defining decision requirements and representing them in a single diagram Shows how clear requirements can allow decision management projects to be run with reduced risk and increased profit Nontechnical and accessible, Knowledge Automation reveals how DRA is destined to become a standard technique in the business analysis and project management toolbox.