Concepts And Programming In Pytorch

Author: Chitra Vasudevan
Editor: BPB Publications
ISBN: 9388176057
File Size: 11,75 MB
Format: PDF, Kindle
Read: 4080
Download

The book has been written in such a way that the concepts are explained in detail, giving adequate emphasis on examples. To make clarity of the programming examples, logic is explained properly as well as discussed by using comments in the program itself. The book covers the topics right from the start of the software by using coding in software and writing programs into it. The book features more on practical approach with more examples covering topics from simple to complex one addressing many of the core concepts and advanced topics also. Key Features Basics concepts of PyTorch like CNN architecture, RNN architecture are discussed in a detailed manner.The worked out case studies are also dealt in a detailed manner.Each and every chapter concludes with the observations of PyTorch to facilitate a better understanding of PyTorchAbundant worked out coding examples.Highly self-explanatory and user-friendly approach This book will "e;need to have"e; title for various reasons as articulated below. Gaining Customers by adopting and implementing PyTorch in / projects/programs and in Research Departments.Help in sustaining Customer Relationships as the core of all successful working relationships are two essential characteristics: trust and commitment. To demonstrate their trustworthiness and commitment to customers, progressive suppliers periodically provide evidence to customers of their accomplishments. Help in delivering "e;Superior Value and Getting an Equitable Return"e; as an understanding value in business markets and doing business based on value delivered gives suppliers the means to get an equitable return for their efforts. The essence of customer value management is to deliver superior value and get an equitable return for it, both of which depend on the value of assessment.ContentsIntroduction to PyTorchLinear RegressionConvolution Neural Network (CNN) Recurrent Neural Networks (RNN)PyTorch Datasets

Programming Pytorch For Deep Learning

Author: Ian Pointer
Editor: O'Reilly Media
ISBN: 1492045322
File Size: 72,57 MB
Format: PDF, Kindle
Read: 3814
Download

Deep learning is changing everything. This machine-learning method has already surpassed traditional computer vision techniques, and the same is happening with NLP. If you're looking to bring deep learning into your domain, this practical book will bring you up to speed on key concepts using Facebook's PyTorch framework. Once author Ian Pointer helps you set up PyTorch on a cloud-based environment, you'll learn how use the framework to create neural architectures for performing operations on images, sound, text, and other types of data. By the end of the book, you'll be able to create neural networks and train them on multiple types of data. Learn how to deploy deep learning models to production Explore PyTorch use cases in companies other than Facebook Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia

Modern Computer Vision With Pytorch

Author: V Kishore Ayyadevara
Editor: Packt Publishing Ltd
ISBN: 1839216530
File Size: 71,81 MB
Format: PDF, ePub, Docs
Read: 6197
Download

Starting from the basics of neural networks, this book covers over 50 applications of computer vision and helps you to gain a solid understanding of the theory of various architectures before implementing them. Each use case is accompanied by a notebook in GitHub with ready-to-execute code and self-assessment questions.

Machine Learning With Pytorch

Author: David Mertz
Editor:
ISBN:
File Size: 56,96 MB
Format: PDF, Kindle
Read: 6329
Download

Sneak Peek The Sneak Peek program provides early access to Pearson video products and is exclusively available to Safari subscribers. Content for titles in this program is made available throughout the development cycle, so products may not be complete, edited, or finalized, including video post-production editing. 6+ Hours of Video Instruction Description Learn the main concepts and techniques used in modern machine learning and deep neural networks through numerous examples written in PyTorch. Overview This course begins with the basic concepts of machine and deep learning. Subsequently, you gain a reasonable familiarity with the main features of PyTorch and learn how it can be applied to some popular problem domains. About the Instructor David Mertz has been involved with the Python community for 20 years, with data science (under various earlier names), and with machine learning (since way back when it was more likely to be called "artificial intelligence"). He was a director of the Python Software Foundation for six years and continues to serve on, or chair, a variety of PSF working groups. He has also written quite a bit about Python: the column "Charming Python" for IBM developerWorks, for many years; the book Text Processing in Python (Addison-Wesley, 2003); and two short books for O'Reilly. He created the data science training program for Anaconda, Inc., and was a senior trainer for them. Skill Level Intermediate Learn How To Apply various machine and deep learning techniques Understand the difference between various machine and deep learning libraries Create classifiers Enhance an existing classifier Who Should Take This Course Programmers and statisticians interested in using Python and the PyTorch library to implement machine learning Course Requirements Programming experience Lesson Descriptions Lesson 1: What Is Machine Learning? What Is Deep Learning The first lesson begins with a high-level overview of the course. It then presents general concepts in machine learning and concepts specifically relevant to neural networks and deep learning. Ideas every data scientist should understand are discussed. The main libraries available for machine learning, and for deep learning specifically, are presented with an eye toward their comparison to PyTorch. The lesson contains an overview of basic concepts in neural networks. Also discussed is the basic idea of a perceptron and the enormous expansion of simple models with hardware that has b...

Pytorch Artificial Intelligence Fundamentals

Author: Jibin Mathew
Editor: Packt Publishing Ltd
ISBN: 1838558292
File Size: 32,86 MB
Format: PDF
Read: 4917
Download

Use PyTorch to build end-to-end artificial intelligence systems using Python Key Features Build smart AI systems to handle real-world problems using PyTorch 1.x Become well-versed with concepts such as deep reinforcement learning (DRL) and genetic programming Cover PyTorch functionalities from tensor manipulation through to deploying in production Book Description Artificial Intelligence (AI) continues to grow in popularity and disrupt a wide range of domains, but it is a complex and daunting topic. In this book, you'll get to grips with building deep learning apps, and how you can use PyTorch for research and solving real-world problems. This book uses a recipe-based approach, starting with the basics of tensor manipulation, before covering Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) in PyTorch. Once you are well-versed with these basic networks, you'll build a medical image classifier using deep learning. Next, you'll use TensorBoard for visualizations. You'll also delve into Generative Adversarial Networks (GANs) and Deep Reinforcement Learning (DRL) before finally deploying your models to production at scale. You'll discover solutions to common problems faced in machine learning, deep learning, and reinforcement learning. You'll learn to implement AI tasks and tackle real-world problems in computer vision, natural language processing (NLP), and other real-world domains. By the end of this book, you'll have the foundations of the most important and widely used techniques in AI using the PyTorch framework. What you will learn Perform tensor manipulation using PyTorch Train a fully connected neural network Advance from simple neural networks to convolutional neural networks (CNNs) and recurrent neural networks (RNNs) Implement transfer learning techniques to classify medical images Get to grips with generative adversarial networks (GANs), along with their implementation Build deep reinforcement learning applications and learn how agents interact in the real environment Scale models to production using ONNX Runtime Deploy AI models and perform distributed training on large datasets Who this book is for This PyTorch book is for AI engineers who are just getting started, machine learning engineers, data scientists and deep learning enthusiasts who are looking for a guide to help them solve AI problems effectively. Working knowledge of the Python programming language and a basic understanding of machine learning are expected.

Deep Learning For Coders With Fastai And Pytorch

Author: Jeremy Howard
Editor: O'Reilly Media
ISBN: 1492045497
File Size: 10,94 MB
Format: PDF, Mobi
Read: 5279
Download

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Deep Learning With Pytorch

Author: Eli Stevens
Editor: Manning Publications
ISBN: 1617295264
File Size: 67,67 MB
Format: PDF, ePub
Read: 366
Download

Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you—and your deep learning skills—become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun. Summary Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you—and your deep learning skills—become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun. Foreword by Soumith Chintala, Cocreator of PyTorch. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Although many deep learning tools use Python, the PyTorch library is truly Pythonic. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s excellent for building quick models, and it scales smoothly from laptop to enterprise. Because companies like Apple, Facebook, and JPMorgan Chase rely on PyTorch, it’s a great skill to have as you expand your career options. It’s easy to get started with PyTorch. It minimizes cognitive overhead without sacrificing the access to advanced features, meaning you can focus on what matters the most - building and training the latest and greatest deep learning models and contribute to making a dent in the world. PyTorch is also a snap to scale and extend, and it partners well with other Python tooling. PyTorch has been adopted by hundreds of deep learning practitioners and several first-class players like FAIR, OpenAI, FastAI and Purdue. About the book Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results. After covering the basics, the book will take you on a journey through larger projects. The centerpiece of the book is a neural network designed for cancer detection. You'll discover ways for training networks with limited inputs and start processing data to get some results. You'll sift through the unreliable initial results and focus on how to diagnose and fix the problems in your neural network. Finally, you'll look at ways to improve your results by training with augmented data, make improvements to the model architecture, and perform other fine tuning. What's inside Training deep neural networks Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Exploring code samples in Jupyter Notebooks About the reader For Python programmers with an interest in machine learning. About the author Eli Stevens had roles from software engineer to CTO, and is currently working on machine learning in the self-driving-car industry. Luca Antiga is cofounder of an AI engineering company and an AI tech startup, as well as a former PyTorch contributor. Thomas Viehmann is a PyTorch core developer and machine learning trainer and consultant. consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Deep Learning With Python

Author: Chao Pan
Editor: Createspace Independent Publishing Platform
ISBN: 9781721250974
File Size: 49,24 MB
Format: PDF, Mobi
Read: 4463
Download

***** BUY NOW (will soon return to 24.77 $) *****Are you thinking of learning deep Learning using Python? (For Beginners Only) If you are looking for a beginners guide to learn deep learning, in just a few hours, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach, which would lead to better mental representations.Step-by-Step Guide and Visual Illustrations and ExamplesThis book and the accompanying examples, you would be well suited to tackle problems, which pique your interests using machine learning and deep learning models. Book Objectives This book will help you: Have an appreciation for deep learning and an understanding of their fundamental principles. Have an elementary grasp of deep learning concepts and algorithms. Have achieved a technical background in deep learning and neural networks using Python. Target UsersThe book designed for a variety of target audiences. Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and deep learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction What is Artificial Intelligence, Machine Learning and Deep Learning? Mathematical Foundations of Deep Learning Understanding Machine Learning Models Evaluation of Machine Learning Models: Overfitting, Underfitting, Bias Variance Tradeoff Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks Deep Reinforcement Learning Introduction to Deep Neural Networks with Keras A First Look at Neural Networks in Keras Introduction to Pytorch The Pytorch Deep Learning Framework Your First Neural Network in Pytorch Deep Learning for Computer Vision Build a Convolutional Neural Network Deep Learning for Natural Language Processing Working with Sequential Data Build a Recurrent Neural Network Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: if you want to smash Deep Learning from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email.***** MONEY BACK GUARANTEE BY AMAZON ***** Editorial Reviews"This is an excellent book, it is a very good introduction to deep learning and neural networks. The concepts and terminology are clearly explained. The book also points out several good locations on the internet where users can obtain more information. I was extremely happy with this book and I recommend it for all beginners" - Prof. Alain Simon, EDHEC Business School. Statistician and DataScientist.

Pytorch Recipes

Author: Pradeepta Mishra
Editor: Apress
ISBN: 1484242580
File Size: 45,65 MB
Format: PDF, Docs
Read: 8473
Download

Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability distributions using PyTorch and get acquainted with its concepts. Further you will dive into transformations and graph computations with PyTorch. Along the way you will take a look at common issues faced with neural network implementation and tensor differentiation, and get the best solutions for them. Moving on to algorithms; you will learn how PyTorch works with supervised and unsupervised algorithms. You will see how convolutional neural networks, deep neural networks, and recurrent neural networks work using PyTorch. In conclusion you will get acquainted with natural language processing and text processing using PyTorch. What You Will Learn Master tensor operations for dynamic graph-based calculations using PyTorch Create PyTorch transformations and graph computations for neural networks Carry out supervised and unsupervised learning using PyTorch Work with deep learning algorithms such as CNN and RNN Build LSTM models in PyTorch Use PyTorch for text processing Who This Book Is For Readers wanting to dive straight into programming PyTorch.

Pytorch Computer Vision Cookbook

Author: Michael Avendi
Editor: Packt Publishing Ltd
ISBN: 1838641432
File Size: 23,82 MB
Format: PDF, ePub, Mobi
Read: 2455
Download

Discover powerful ways to use deep learning algorithms and solve real-world computer vision problems using Python Key Features Solve the trickiest of problems in computer vision by combining the power of deep learning and neural networks Leverage PyTorch 1.x capabilities to perform image classification, object detection, and more Train and deploy enterprise-grade, deep learning models for computer vision applications Book Description Computer vision techniques play an integral role in helping developers gain a high-level understanding of digital images and videos. With this book, you’ll learn how to solve the trickiest problems in computer vision (CV) using the power of deep learning algorithms, and leverage the latest features of PyTorch 1.x to perform a variety of CV tasks. Starting with a quick overview of the PyTorch library and key deep learning concepts, the book then covers common and not-so-common challenges faced while performing image recognition, image segmentation, object detection, image generation, and other tasks. Next, you’ll understand how to implement these tasks using various deep learning architectures such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and generative adversarial networks (GANs). Using a problem-solution approach, you’ll learn how to solve any issue you might face while fine-tuning the performance of a model or integrating it into your application. Later, you’ll get to grips with scaling your model to handle larger workloads, and implementing best practices for training models efficiently. By the end of this CV book, you’ll be proficient in confidently solving many CV related problems using deep learning and PyTorch. What you will learn Develop, train and deploy deep learning algorithms using PyTorch 1.x Understand how to fine-tune and change hyperparameters to train deep learning algorithms Perform various CV tasks such as classification, detection, and segmentation Implement a neural style transfer network based on CNNs and pre-trained models Generate new images and implement adversarial attacks using GANs Implement video classification models based on RNN, LSTM, and 3D-CNN Discover best practices for training and deploying deep learning algorithms for CV applications Who this book is for Computer vision professionals, data scientists, deep learning engineers, and AI developers looking for quick solutions for various computer vision problems will find this book useful. Intermediate-level knowledge of computer vision concepts, along with Python programming experience is required.

Deep Learning With Pytorch Quick Start Guide

Author: David Julian
Editor: Packt Publishing Ltd
ISBN: 1789539730
File Size: 13,71 MB
Format: PDF, ePub, Docs
Read: 4142
Download

Introduction to deep learning and PyTorch by building a convolutional neural network and recurrent neural network for real-world use cases such as image classification, transfer learning, and natural language processing. Key Features Clear and concise explanations Gives important insights into deep learning models Practical demonstration of key concepts Book Description PyTorch is extremely powerful and yet easy to learn. It provides advanced features, such as supporting multiprocessor, distributed, and parallel computation. This book is an excellent entry point for those wanting to explore deep learning with PyTorch to harness its power. This book will introduce you to the PyTorch deep learning library and teach you how to train deep learning models without any hassle. We will set up the deep learning environment using PyTorch, and then train and deploy different types of deep learning models, such as CNN, RNN, and autoencoders. You will learn how to optimize models by tuning hyperparameters and how to use PyTorch in multiprocessor and distributed environments. We will discuss long short-term memory network (LSTMs) and build a language model to predict text. By the end of this book, you will be familiar with PyTorch's capabilities and be able to utilize the library to train your neural networks with relative ease. What you will learn Set up the deep learning environment using the PyTorch library Learn to build a deep learning model for image classification Use a convolutional neural network for transfer learning Understand to use PyTorch for natural language processing Use a recurrent neural network to classify text Understand how to optimize PyTorch in multiprocessor and distributed environments Train, optimize, and deploy your neural networks for maximum accuracy and performance Learn to deploy production-ready models Who this book is for Developers and Data Scientist familiar with Machine Learning but new to deep learning, or existing practitioners of deep learning who would like to use PyTorch to train their deep learning models will find this book to be useful. Having knowledge of Python programming will be an added advantage, while previous exposure to PyTorch is not needed.

Deep Learning With Pytorch

Author: Vishnu Subramanian
Editor: Packt Publishing Ltd
ISBN: 1788626079
File Size: 18,98 MB
Format: PDF, ePub, Docs
Read: 7063
Download

Build neural network models in text, vision and advanced analytics using PyTorch Key Features Learn PyTorch for implementing cutting-edge deep learning algorithms. Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios; Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples; Book Description Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease. What you will learn Use PyTorch for GPU-accelerated tensor computations Build custom datasets and data loaders for images and test the models using torchvision and torchtext Build an image classifier by implementing CNN architectures using PyTorch Build systems that do text classification and language modeling using RNN, LSTM, and GRU Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning Learn how to mix multiple models for a powerful ensemble model Generate new images using GAN’s and generate artistic images using style transfer Who this book is for This book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected.

Hands On Generative Adversarial Networks With Pytorch 1 X

Author: John Hany
Editor: Packt Publishing Ltd
ISBN: 1789534283
File Size: 47,99 MB
Format: PDF, Kindle
Read: 9339
Download

Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models Key Features Implement GAN architectures to generate images, text, audio, 3D models, and more Understand how GANs work and become an active contributor in the open source community Learn how to generate photo-realistic images based on text descriptions Book Description With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems. What you will learn Implement PyTorch's latest features to ensure efficient model designing Get to grips with the working mechanisms of GAN models Perform style transfer between unpaired image collections with CycleGAN Build and train 3D-GANs to generate a point cloud of 3D objects Create a range of GAN models to perform various image synthesis operations Use SEGAN to suppress noise and improve the quality of speech audio Who this book is for This GAN book is for machine learning practitioners and deep learning researchers looking to get hands-on guidance in implementing GAN models using PyTorch. You’ll become familiar with state-of-the-art GAN architectures with the help of real-world examples. Working knowledge of Python programming language is necessary to grasp the concepts covered in this book.

Neuronale Netze Selbst Programmieren

Author: Tariq Rashid
Editor:
ISBN: 9781492064046
File Size: 10,72 MB
Format: PDF, ePub, Docs
Read: 8129
Download

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Dennoch verstehen nur wenige, wie Neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie Neuronale Netze arbeiten. Dafür brauchen Sie keine tieferen Mathematik-Kenntnisse, denn alle mathematischen Konzepte werden behutsam und mit vielen Illustrationen erläutert. Dann geht es in die Praxis: Sie programmieren Ihr eigenes Neuronales Netz mit Python und bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. Zum Schluss lassen Sie das Netz noch auf einem Raspberry Pi Zero laufen. - Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Deep Learning With Pytorch 1 X

Author: Laura Mitchell
Editor: Packt Publishing Ltd
ISBN: 183855033X
File Size: 14,79 MB
Format: PDF, Mobi
Read: 2538
Download

Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x Key Features Gain a thorough understanding of the PyTorch framework and learn to implement neural network architectures Understand GPU computing to perform heavy deep learning computations using Python Apply cutting-edge natural language processing (NLP) techniques to solve problems with textual data Book Description PyTorch is gaining the attention of deep learning researchers and data science professionals due to its accessibility and efficiency, along with the fact that it's more native to the Python way of development. This book will get you up and running with this cutting-edge deep learning library, effectively guiding you through implementing deep learning concepts. In this second edition, you'll learn the fundamental aspects that power modern deep learning, and explore the new features of the PyTorch 1.x library. You'll understand how to solve real-world problems using CNNs, RNNs, and LSTMs, along with discovering state-of-the-art modern deep learning architectures, such as ResNet, DenseNet, and Inception. You'll then focus on applying neural networks to domains such as computer vision and NLP. Later chapters will demonstrate how to build, train, and scale a model with PyTorch and also cover complex neural networks such as GANs and autoencoders for producing text and images. In addition to this, you'll explore GPU computing and how it can be used to perform heavy computations. Finally, you'll learn how to work with deep learning-based architectures for transfer learning and reinforcement learning problems. By the end of this book, you'll be able to confidently and easily implement deep learning applications in PyTorch. What you will learn Build text classification and language modeling systems using neural networks Implement transfer learning using advanced CNN architectures Use deep reinforcement learning techniques to solve optimization problems in PyTorch Mix multiple models for a powerful ensemble model Build image classifiers by implementing CNN architectures using PyTorch Get up to speed with reinforcement learning, GANs, LSTMs, and RNNs with real-world examples Who this book is for This book is for data scientists and machine learning engineers looking to work with deep learning algorithms using PyTorch 1.x. You will also find this book useful if you want to migrate to PyTorch 1.x. Working knowledge of Python programming and some understanding of machine learning will be helpful.

Deep Reinforcement Learning With Python

Author: Nimish Sanghi
Editor: Apress
ISBN: 9781484268087
File Size: 30,49 MB
Format: PDF, ePub, Docs
Read: 7697
Download

Deep reinforcement learning is a fast-growing discipline that is making a significant impact in fields of autonomous vehicles, robotics, healthcare, finance, and many more. This book covers deep reinforcement learning using deep-q learning and policy gradient models with coding exercise. You'll begin by reviewing the Markov decision processes, Bellman equations, and dynamic programming that form the core concepts and foundation of deep reinforcement learning. Next, you'll study model-free learning followed by function approximation using neural networks and deep learning. This is followed by various deep reinforcement learning algorithms such as deep q-networks, various flavors of actor-critic methods, and other policy-based methods. You'll also look at exploration vs exploitation dilemma, a key consideration in reinforcement learning algorithms, along with Monte Carlo tree search (MCTS), which played a key role in the success of AlphaGo. The final chapters conclude with deep reinforcement learning implementation using popular deep learning frameworks such as TensorFlow and PyTorch. In the end, you'll understand deep reinforcement learning along with deep q networks and policy gradient models implementation with TensorFlow, PyTorch, and Open AI Gym. What You'll Learn Examine deep reinforcement learning Implement deep learning algorithms using OpenAI’s Gym environment Code your own game playing agents for Atari using actor-critic algorithms Apply best practices for model building and algorithm training Who This Book Is For Machine learning developers and architects who want to stay ahead of the curve in the field of AI and deep learning.

Hands On One Shot Learning With Python

Author: Shruti Jadon
Editor: Packt Publishing Ltd
ISBN: 1838824871
File Size: 10,46 MB
Format: PDF, ePub, Docs
Read: 2016
Download

Get to grips with building powerful deep learning models using PyTorch and scikit-learn Key Features Learn how you can speed up the deep learning process with one-shot learning Use Python and PyTorch to build state-of-the-art one-shot learning models Explore architectures such as Siamese networks, memory-augmented neural networks, model-agnostic meta-learning, and discriminative k-shot learning Book Description One-shot learning has been an active field of research for scientists trying to develop a cognitive machine that mimics human learning. With this book, you'll explore key approaches to one-shot learning, such as metrics-based, model-based, and optimization-based techniques, all with the help of practical examples. Hands-On One-shot Learning with Python will guide you through the exploration and design of deep learning models that can obtain information about an object from one or just a few training samples. The book begins with an overview of deep learning and one-shot learning and then introduces you to the different methods you can use to achieve it, such as deep learning architectures and probabilistic models. Once you've got to grips with the core principles, you'll explore real-world examples and implementations of one-shot learning using PyTorch 1.x on datasets such as Omniglot and MiniImageNet. Finally, you'll explore generative modeling-based methods and discover the key considerations for building systems that exhibit human-level intelligence. By the end of this book, you'll be well-versed with the different one- and few-shot learning methods and be able to use them to build your own deep learning models. What you will learn Get to grips with the fundamental concepts of one- and few-shot learning Work with different deep learning architectures for one-shot learning Understand when to use one-shot and transfer learning, respectively Study the Bayesian network approach for one-shot learning Implement one-shot learning approaches based on metrics, models, and optimization in PyTorch Discover different optimization algorithms that help to improve accuracy even with smaller volumes of data Explore various one-shot learning architectures based on classification and regression Who this book is for If you're an AI researcher or a machine learning or deep learning expert looking to explore one-shot learning, this book is for you. It will help you get started with implementing various one-shot techniques to train models faster. Some Python programming experience is necessary to understand the concepts covered in this book.

Pytorch 1 X Reinforcement Learning Cookbook

Author: Yuxi (Hayden) Liu
Editor: Packt Publishing Ltd
ISBN: 1838553231
File Size: 45,60 MB
Format: PDF, Kindle
Read: 7098
Download

Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Key Features Use PyTorch 1.x to design and build self-learning artificial intelligence (AI) models Implement RL algorithms to solve control and optimization challenges faced by data scientists today Apply modern RL libraries to simulate a controlled environment for your projects Book Description Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems. What you will learn Use Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problems Develop a multi-armed bandit algorithm to optimize display advertising Scale up learning and control processes using Deep Q-Networks Simulate Markov Decision Processes, OpenAI Gym environments, and other common control problems Select and build RL models, evaluate their performance, and optimize and deploy them Use policy gradient methods to solve continuous RL problems Who this book is for Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.

Pytorch Deep Learning Hands On

Author: Sherin Thomas
Editor: Packt Publishing Ltd
ISBN: 1788833430
File Size: 56,68 MB
Format: PDF, Kindle
Read: 2327
Download

Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key Features Internals and principles of PyTorch Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more Build deep learning workflows and take deep learning models from prototyping to production Book Description PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly. PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools. Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch. This book is ideal if you want to rapidly add PyTorch to your deep learning toolset. What you will learn Use PyTorch to build: Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and more Convolutional Neural Networks – create advanced computer vision systems Recurrent Neural Networks – work with sequential data such as natural language and audio Generative Adversarial Networks – create new content with models including SimpleGAN and CycleGAN Reinforcement Learning – develop systems that can solve complex problems such as driving or game playing Deep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packages Production-ready models – package your models for high-performance production environments Who this book is for Machine learning engineers who want to put PyTorch to work.