Data Wrangling With R

Author: Bradley C. Boehmke, Ph.D.
Editor: Springer
ISBN: 3319455990
Size: 16,85 MB
Format: PDF, ePub
Read: 330

This guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques. This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author's goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned: How to work with different types of data such as numerics, characters, regular expressions, factors, and dates The difference between different data structures and how to create, add additional components to, and subset each data structure How to acquire and parse data from locations previously inaccessible How to develop functions and use loop control structures to reduce code redundancy How to use pipe operators to simplify code and make it more readable How to reshape the layout of data and manipulate, summarize, and join data sets

Data Wrangling With R

ISBN: 9781838559793
Size: 12,71 MB
Format: PDF, ePub, Mobi
Read: 546

Hands On Data Science With R

Author: Vitor Bianchi Lanzetta
Editor: Packt Publishing Ltd
ISBN: 1789135834
Size: 10,93 MB
Format: PDF
Read: 177

A hands-on guide for professionals to perform various data science tasks in R Key Features Explore the popular R packages for data science Use R for efficient data mining, text analytics and feature engineering Become a thorough data science professional with the help of hands-on examples and use-cases in R Book Description R is the most widely used programming language, and when used in association with data science, this powerful combination will solve the complexities involved with unstructured datasets in the real world. This book covers the entire data science ecosystem for aspiring data scientists, right from zero to a level where you are confident enough to get hands-on with real-world data science problems. The book starts with an introduction to data science and introduces readers to popular R libraries for executing data science routine tasks. This book covers all the important processes in data science such as data gathering, cleaning data, and then uncovering patterns from it. You will explore algorithms such as machine learning algorithms, predictive analytical models, and finally deep learning algorithms. You will learn to run the most powerful visualization packages available in R so as to ensure that you can easily derive insights from your data. Towards the end, you will also learn how to integrate R with Spark and Hadoop and perform large-scale data analytics without much complexity. What you will learn Understand the R programming language and its ecosystem of packages for data science Obtain and clean your data before processing Master essential exploratory techniques for summarizing data Examine various machine learning prediction, models Explore the H2O analytics platform in R for deep learning Apply data mining techniques to available datasets Work with interactive visualization packages in R Integrate R with Spark and Hadoop for large-scale data analytics Who this book is for If you are a budding data scientist keen to learn about the popular pandas library, or a Python developer looking to step into the world of data analysis, this book is the ideal resource you need to get started. Some programming experience in Python will be helpful to get the most out of this course

Hands On Machine Learning With R

Author: Brad Boehmke
Editor: CRC Press
ISBN: 1000730190
Size: 15,54 MB
Format: PDF, Docs
Read: 158

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Introduction To Data Science

Author: Rafael A. Irizarry
Editor: CRC Press
ISBN: 1000708039
Size: 13,55 MB
Format: PDF, Docs
Read: 970

Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Data Wrangling

Author: Patrick Houlihan
Editor: Apress
ISBN: 9781484206126
Size: 13,14 MB
Format: PDF, Kindle
Read: 497

Use R to gather, clean, and manage financial data in structured and unstructured databases. Learn how to read and write the increasing volume and complexity of data from and between SQL and MongoDB databases. Data Wrangling teaches practitioners and students of financial data analysis the SQL and MongoDB database management skills they need to succeed in their analytic work. The authors, who have deep experience in the financial industry as well as in teaching quantitative finance, take most of the operational and programming examples that enrich their book from the financial arena, including both market data and text-based data. The concepts presented through these examples are nonetheless applicable to a wide range of fields, so data analysts from all industries will profit from this book. What You'll Learn Use a rich feature set of R for financial data analytics Employ an integrated comparison-based learning approach to SQL and NoSQL database management, including query and insert constructs Understand data wrangling best practices and solutions Be exposured to cutting-edge database technologies such as text-based analytics and their financial applications Study an abundance of practical examples from the real world of finance Who This Book Is For Data analysts in the financial industry, data analysts in nonfinancial fields, and those who deal with data in their professional or academic work

Practical Data Wrangling

Author: Allan Visochek
Editor: Packt Publishing Ltd
ISBN: 1787283674
Size: 14,35 MB
Format: PDF
Read: 493

Turn your noisy data into relevant, insight-ready information by leveraging the data wrangling techniques in Python and R About This Book This easy-to-follow guide takes you through every step of the data wrangling process in the best possible way Work with different types of datasets, and reshape the layout of your data to make it easier for analysis Get simple examples and real-life data wrangling solutions for data pre-processing Who This Book Is For If you are a data scientist, data analyst, or a statistician who wants to learn how to wrangle your data for analysis in the best possible manner, this book is for you. As this book covers both R and Python, some understanding of them will be beneficial. What You Will Learn Read a csv file into python and R, and print out some statistics on the data Gain knowledge of the data formats and programming structures involved in retrieving API data Make effective use of regular expressions in the data wrangling process Explore the tools and packages available to prepare numerical data for analysis Find out how to have better control over manipulating the structure of the data Create a dexterity to programmatically read, audit, correct, and shape data Write and complete programs to take in, format, and output data sets In Detail Around 80% of time in data analysis is spent on cleaning and preparing data for analysis. This is, however, an important task, and is a prerequisite to the rest of the data analysis workflow, including visualization, analysis and reporting. Python and R are considered a popular choice of tool for data analysis, and have packages that can be best used to manipulate different kinds of data, as per your requirements. This book will show you the different data wrangling techniques, and how you can leverage the power of Python and R packages to implement them. You'll start by understanding the data wrangling process and get a solid foundation to work with different types of data. You'll work with different data structures and acquire and parse data from various locations. You'll also see how to reshape the layout of data and manipulate, summarize, and join data sets. Finally, we conclude with a quick primer on accessing and processing data from databases, conducting data exploration, and storing and retrieving data quickly using databases. The book includes practical examples on each of these points using simple and real-world data sets to give you an easier understanding. By the end of the book, you'll have a thorough understanding of all the data wrangling concepts and how to implement them in the best possible way. Style and approach This is a practical book on data wrangling designed to give you an insight into the practical application of data wrangling. It takes you through complex concepts and tasks in an accessible way, featuring information on a wide range of data wrangling techniques with Python and R

Data Wrangling With Python

Author: Jacqueline Kazil
Editor: "O'Reilly Media, Inc."
ISBN: 1491956801
Size: 19,18 MB
Format: PDF, ePub
Read: 244

How do you take your data analysis skills beyond Excel to the next level? By learning just enough Python to get stuff done. This hands-on guide shows non-programmers like you how to process information that’s initially too messy or difficult to access. You don't need to know a thing about the Python programming language to get started. Through various step-by-step exercises, you’ll learn how to acquire, clean, analyze, and present data efficiently. You’ll also discover how to automate your data process, schedule file- editing and clean-up tasks, process larger datasets, and create compelling stories with data you obtain. Quickly learn basic Python syntax, data types, and language concepts Work with both machine-readable and human-consumable data Scrape websites and APIs to find a bounty of useful information Clean and format data to eliminate duplicates and errors in your datasets Learn when to standardize data and when to test and script data cleanup Explore and analyze your datasets with new Python libraries and techniques Use Python solutions to automate your entire data-wrangling process

Modern Data Science With R

Author: Benjamin S. Baumer
Editor: CRC Press
ISBN: 1498724493
Size: 19,78 MB
Format: PDF, ePub, Docs
Read: 413

Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.

Data Computing

Author: Daniel Kaplan
ISBN: 9780983965848
Size: 17,53 MB
Format: PDF, ePub
Read: 406