Dynamic Nanoplasmonics

Author: Xiaoyang Duan
Editor:
ISBN:
File Size: 22,80 MB
Format: PDF, Mobi
Read: 9839
Download


Optics Of Conducting Polymer Thin Films And Nanostructures

Author: Shangzhi Chen
Editor: Linköping University Electronic Press
ISBN: 9179297455
File Size: 78,31 MB
Format: PDF, Docs
Read: 8807
Download

Intrinsically conducting polymers forms a category of doped conjugated polymers that can conduct electricity. Since their discovery in the late 1970s, they have been widely applied in many fields, ranging from optoelectronic devices to biosensors. The most common type of conducting polymers is poly(3,4-ethylenedioxythiophene), or PEDOT. PEDOT has been popularly used as electrodes for solar cells or light-emitting diodes, as channels for organic electrochemical transistors, and as p-type legs for organic thermoelectric generators. Although many studies have been dedicated to PEDOT-based materials, there has been a lack of a unified model to describe their optical properties across different spectral ranges. In addition, the interesting optical properties of PEDOT-based materials, benefiting from its semi-metallic character, have only been rarely studied and utilized, and could potentially enable new applications. Plasmonics is a research field focusing on interactions between light and metals, such as the noble metals (gold and silver). It has enabled various opportunities in fundamental photonics as well as practical applications, varying from biosensors to colour displays. This thesis explores highly conducting polymers as alternatives to noble metals and as a new type of active plasmonic materials. Despite high degrees of microstructural disorder, conducting polymers can possess electrical conductivity approaching that of poor metals, with particularly high conductivity for PEDOT deposited via vapour phase polymerization (VPP). In this thesis, we systematically studied the optical and structural properties of VPP PEDOT thin films and their nanostructures for plasmonics and other optical applications. We employed ultra-wide spectral range ellipsometry to characterize thin VPP PEDOT films and proposed an anisotropic Drude-Lorentz model to describe their optical conductivity, covering the ultraviolet, visible, infrared, and terahertz ranges. Based on this model, PEDOT doped with tosylate (PEDOT:Tos) presented negative real permittivity in the near infrared range. While this indicated optical metallic character, the material also showed comparably large imaginary permittivity and associated losses. To better understand the VPP process, we carefully examined films with a collection of microstructural and spectroscopic characterization methods and found a vertical layer stratification in these polymer films. We unveiled the cause as related to unbalanced transport of polymerization precursors. By selection of suitable counterions, e.g., trifluoromethane sulfonate (OTf), and optimization of reaction conditions, we were able to obtain PEDOT films with electrical conductivity exceeding 5000 S/cm. In the near infrared range from 1 to 5 µm, these PEDOT:OTf films provided a well-defined plasmonic regime, characterized by negative real permittivity and lower magnitude imaginary component. Using a colloidal lithography-based approach, we managed to fabricate nanodisks of PEDOT:OTf and showed that they exhibited clear plasmonic absorption features. The experimental results matched theoretical calculations and numerical simulations. Benefiting from their mixed ionic-electronic conducting characters, such organic plasmonic materials possess redox-tunable properties that make them promising as tuneable optical nanoantennas for spatiotemporally dynamic systems. Finally, we presented a low-cost and efficient method to create structural colour surfaces and images based on UV-treated PEDOT films on metallic mirrors. The concept generates beautiful and vivid colours through-out the visible range utilizing a synergistic effect of simultaneously modulating polymer absorption and film thickness. The simplicity of the device structure, facile fabrication process, and tunability make this proof-of-concept device a potential candidate for future low-cost backlight-free displays and labels.

Nanoplasmonics Nano Optics Nanocomposites And Surface Studies

Author: Olena Fesenko
Editor: Springer
ISBN: 3319185438
File Size: 57,36 MB
Format: PDF, ePub
Read: 7011
Download

This book highlights the most recent advances in nano science from leading researchers in Ukraine, Europe and beyond. It features contributions from participants of the 3rd International Summer School “Nanotechnology: From Fundamental Research to Innovations,” held in Yaremche, Ukraine on August 23-26, 2014 and of the 2nd International NANO-2014 Conference, held in Lviv, Ukraine on August 27-30, 2014. These events took place within the framework of the European Commission FP7 project Nano twinning and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy) and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results in the areas of nanocomposites and nanomaterials, nanostructured surfaces, microscopy of nano-objects, nano-optics and nano photonics, nano plasmonics, nano chemistry, nano biotechnology and surface enhanced spectroscopy. Covers nanocomposites, nano structured surfaces and nano biotechnology Presents state-of-the-art advances in nano plasmonics, nanomaterials characterization and surface enhanced spectroscopy Represents essential reading for advanced undergraduate and graduate students through practicing university and industry researchers

Thermoplasmonics

Author: Guillaume Baffou
Editor: Cambridge University Press
ISBN: 1108307868
File Size: 41,90 MB
Format: PDF, ePub
Read: 4256
Download

Plasmonics is an important branch of optics concerned with the interaction of metals with light. Under appropriate illumination, metal nanoparticles can exhibit enhanced light absorption, becoming nanosources of heat that can be precisely controlled. This book provides an overview of the exciting new field of thermoplasmonics and a detailed discussion of its theoretical underpinning in nanophotonics. This topic has developed rapidly in the last decade, and is now a highly-active area of research due to countless applications in nanoengineering and nanomedicine. These important applications include photothermal cancer therapy, drug and gene delivery, nanochemistry and photothermal imaging. This timely and self-contained text is suited to all researchers and graduate students working in plasmonics, nano-optics and thermal-induced processes at the nanoscale.

Graphene Based Terahertz Electronics And Plasmonics

Author: Vladimir Mitin
Editor: CRC Press
ISBN: 1000576906
File Size: 76,91 MB
Format: PDF, Mobi
Read: 4249
Download

Graphene demonstrates interesting electrical, optical, and optoelectronic properties. A number of other one-atom-thick material structures have been discovered and studied. Industrially applicable technologies for these structures are currently under active development. In spite of enormous research in the area of devices based on graphene, the number of extensive review publications on THz devices based on graphene is small. This review volume would fill the gap. Researchers and engineers working in the fields of electronics and plasmonics can use it to understand the influence of plasmonics on device performance. The book can be also be used as a required text for doctorate courses and as a supplementary material for postgraduate courses. The material presented in the book is reviewed in detail in Chapter 1. Chapter 2 discusses the electronic and plasmonic properties of graphene and heterostructures based on graphene for all devices. Chapters 3–7 focus on the concepts of detectors and emitters with a special emphasis on plasmonic enhancement of those devices as well as on population inversion and lasing.

Nanoplasmonics

Author: Hiroshi Masuhara
Editor: Elsevier
ISBN: 9780080458250
File Size: 60,11 MB
Format: PDF, Docs
Read: 3744
Download

This second volume in the Handai Nanophotonics book series covers the area of Nanoplasmonics, a recent hot topic in the field of nanophotonics, impacting a diverse range of research disciplines from information technology and nanotechnology to the bio- and medical sciences. The interaction between photons and metal nanostructures leads to interesting and extraordinary scientific phenomena and produces new functions for nano materials and devices. Newly discovered physical phenomena include local mode of surface plasmon polariton excited in nanoparticles, hot spots on nano-rods and nano-cones, long range mode of surface plasmons excited on thin metal films, and dispersion relationship bandgaps of surface plasmons in periodic metal structures. These have been applied to, for example, single molecule detection and nano-imaging/spectroscopy, photon accumulation for lasing applications, optical nano-waveguides and nano-circuits. * interdisciplinary research text on the application of nanoplasmonics research and effects in devices for applications * bridges the gap between conventional photophysics & photochemistry and nanoscience * continuing the series that focuses on 'hot' areas of photochemistry, optics, material science and bioscience.

Plasmonics Theory And Applications

Author: Tigran V. Shahbazyan
Editor: Springer Science & Business Media
ISBN: 9400778058
File Size: 23,58 MB
Format: PDF, ePub
Read: 8243
Download

This contributed volume summarizes recent theoretical developments in plasmonics and its applications in physics, chemistry, materials science, engineering, and medicine. It focuses on recent advances in several major areas of plasmonics including plasmon-enhanced spectroscopies, light scattering, many-body effects, nonlinear optics, and ultrafast dynamics. The theoretical and computational methods used in these investigations include electromagnetic calculations, density functional theory calculations, and nonequilibrium electron dynamics calculations. The book presents a comprehensive overview of these methods as well as their applications to various current problems of interest.

Plasmonics In Biology And Medicine

Author:
Editor:
ISBN:
File Size: 12,84 MB
Format: PDF
Read: 3811
Download


Plasmonics

Author: Satoshi Kawata
Editor: Society of Photo Optical
ISBN:
File Size: 15,43 MB
Format: PDF, Kindle
Read: 4382
Download

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Nanoplasmonics In Metallic Nanostructures And Dirac Systems

Author: Hari P. Paudel
Editor:
ISBN:
File Size: 73,44 MB
Format: PDF, Docs
Read: 745
Download

In this book chapter, we review some of the progress made in nanoplasmonics and related optoelectronics phenomena in the field of two-dimensional (2D) materials and the recent 3D Weyl semimetals. We give a brief overview of plasmonics for three-dimensional (3DEG) and two-dimensional electron gases and draw comparisons with graphene, 3D topological insulators, 3D Weyl semimetals, and nanoplasmonics in nanogeometries. We discuss the decay of plasmons into electron-hole pairs and the subsequent thermalization and cooling of the hot carriers. We present our recent results in the fields of plasmonics in different nanostructures made of noble metals, such as Silver, and plasmonics in Dirac systems such as graphene and 3D topological insulators. We show a possibility of dynamically shifting the plasmon resonances in hybrid metal-semiconductor nanostructures. Plasmonics in 3D topological insulator and 3D Weyl semimetals have been least explored in nanoplasmonics although it can provide a variety of interesting physical phenomena involving spin plasmonics and chirality. Due to the inherent large spin-orbit coupling, locked spin-momentum oscillations can exist under special conditions and in the presence of an external laser field. We explore symmetric and antisymmetric modes in a slab of 3D TIs and present their dependences on the thickness of the slab.

Introduction To Plasmonics

Author: Sabine Szunerits
Editor: CRC Press
ISBN: 9814613134
File Size: 67,67 MB
Format: PDF, ePub, Mobi
Read: 1617
Download

Plasmonics is a highly dynamic field, and a number of researchers and scientists from other disciplines have become involved in it. This book presents the most widely employed approaches to plasmonics and the numerous applications associated with it. There are several underlying elements in plasmonics research. Advances in nanoscience and nanotechnology have made possible the fabrication of plasmonic nanostructures, deposition of thin films, and development of highly sensitive optical characterization techniques. The different approaches to nanostructuring metals have led to a wealth of interesting optical properties and functionality via manipulation of the plasmon modes that such structures support. The sensitivity of plasmonic structures to the changes in their local dielectric environment has led to the development of new sensing strategies and systems for chemical analysis and identification. The book discusses all of these aspects.

Computational Nanomedicine And Nanotechnology

Author: Renat R. Letfullin
Editor: Springer
ISBN: 3319435779
File Size: 51,63 MB
Format: PDF, ePub
Read: 8629
Download

This textbook, aimed at advanced undergraduate and graduate students, introduces the basic knowledge required for nanomedicine and nanotechnology, and emphasizes how the combined use of chemistry and light with nanoparticles can serve as treatments and therapies for cancer. This includes nanodevices, nanophototherapies, nanodrug design, and laser heating of nanoparticles and cell organelles. In addition, the book covers the emerging fields of nanophotonics and nanoplasmonics, which deal with nanoscale confinement of radiation and optical interactions on a scale much smaller than the wavelength of the light. The applications of nanophotonics and nanoplasmonics to biomedical research discussed in the book range from optical biosensing to photodynamic therapies.Cutting-edge and reflective of the multidisciplinary nature of nanomedicine, this book effectively combines knowledge and modeling from nanoscience, medicine, biotechnology, physics, optics, engineering, and pharmacy in an easily digestible format. Among the topics covered in-depth are:• The structure of cancer cells and their properties, as well as techniques for selective targeting of cancer and gene therapy.• Nanoplasmonics: Lorentz-Mie simulations of optical properties of nanoparticles and the use of plasmonic nanoparticles in diagnosis and therapy.• Nanophotonics: short and ultrashort laser pulse interactions with nanostructures, time and space simulations of thermal fields in and around the nanobioparticles, and nanoclusters heated by radiation.• Modeling of soft and hard biological tissue ablation by activated nanoparticles, as well as optical, thermal, kinetic, and dynamic modeling.• Detection techniques, including the design and methods of activation of nanodrugs and plasmon resonance detection techniques.• Design and fabrication of nanorobots and nanoparticles.• Effective implementation of nanotherapy treatments.• Nanoheat transfer, particularly the heating and cooling kinetics of nanoparticles.• ...and more!Each chapter contains a set of lectures in the form of text for student readers and PowerPoints for use by instructors, as well as homework exercises. Selected chapters also contain computer practicums, including Maple codes and worked-out examples. This book helps readers become more knowledgeable and versant in nanomedicine and nanotechnology, inspires readers to work creatively and go beyond the ideas and topics presented within, and is sufficiently comprehensive to be of value to research scientists as well as students.

Plasmonics

Author:
Editor:
ISBN:
File Size: 20,49 MB
Format: PDF, ePub, Docs
Read: 5805
Download


Plasmonics Antenna Array Using Silver Nanoparticles

Author: Laurent Lambert
Editor:
ISBN:
File Size: 24,63 MB
Format: PDF, Docs
Read: 6247
Download


Nanoplasmonic Spectroscopic Imaging And Molecular Probes For Living Cells

Author: Yeonho Choi
Editor:
ISBN:
File Size: 69,48 MB
Format: PDF, Mobi
Read: 9790
Download


Active Plasmonics And Acoustic Metamaterials

Author: Muralidhar Sai Ambati
Editor:
ISBN:
File Size: 15,94 MB
Format: PDF, Docs
Read: 5110
Download


Materials For Nanophotonics Plasmonics Metamaterials And Light Localization

Author: Luca Dal Negro
Editor:
ISBN:
File Size: 69,20 MB
Format: PDF, ePub, Mobi
Read: 9633
Download

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.

Integrated Nanophotonic Biosensors For Quantiative Molecular Diagnostics

Author: Gang Logan Liu
Editor:
ISBN:
File Size: 40,20 MB
Format: PDF, Kindle
Read: 9584
Download


Optical Metamaterials Qualitative Models

Author: Arkadi Chipouline
Editor: Springer
ISBN: 3319775200
File Size: 23,50 MB
Format: PDF, ePub
Read: 8973
Download

This textbook bridges the gap between university courses on electrodynamics and the knowledge needed to successfully address the problem of electrodynamics of metamaterials. It appeals to both experimentalists and theoreticians who are interested in the physical basics of metamaterials and plasmonics. Focusing on qualitative fundamental treatment as opposed to quantitative numerical treatment, it covers the phenomena of artificial magnetization at high frequencies, and discusses homogenization procedures and the basics of quantum dynamics in detail. By considering different phenomena it creates a self-consistent qualitative picture to explain most observable phenomena. This allows readers to develop a better understanding of the concepts, and helps to create a conceptual approach, which is especially important in educational contexts. This clearly written book includes problems and solutions for each chapter, which can be used for seminars and homework, as well as qualitative models that are helpful to students.

Reviews In Plasmonics 2016

Author: Chris D. Geddes
Editor: Springer
ISBN: 3319480812
File Size: 73,87 MB
Format: PDF, ePub
Read: 5336
Download

Reviews in Plasmonics 2016, the third volume of the new book series from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year’s progress in surface plasmon phenomena and its applications, with authoritative analytical reviews in sufficient detail to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential source of reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource.