Dynamics Of Proteins And Nucleic Acids

Author: J. Andrew McCammon
Editor: Cambridge University Press
ISBN: 9780521356527
File Size: 60,67 MB
Format: PDF, Docs
Read: 8581
Download

This book is a self-contained introduction to the theory of atomic motion in proteins and nucleic acids. An understanding of such motion is essential because it plays a crucially important role in biological activity. The authors, both of whom are well known for their work in this field, describe in detail the major theoretical methods that are likely to be useful in the computer-aided design of drugs, enzymes and other molecules. A variety of theoretical and experimental studies is described and these are critically analyzed to provide a comprehensive picture of dynamic aspects of biomolecular structure and function. The book will be of interest to graduate students and research workers in structural biochemistry (X-ray diffraction and NMR), theoretical chemistry (liquids and polymers), biophysics, enzymology, molecular biology, pharmaceutical chemistry, genetic engineering and biotechnology.

Dynamics Of Proteins And Nucleic Acids

Author:
Editor: Elsevier
ISBN: 0124116272
File Size: 28,36 MB
Format: PDF, Mobi
Read: 5055
Download

Published continuously since 1944, Advances in Protein Chemistry and Structural Biology has been a continuous, essential resource for protein chemists. Covering reviews of methodology and research in all aspects of protein chemistry, including purification/expression, proteomics, modeling and structural determination and design, each volume brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics. Covers reviews of methodology and research in all aspects of protein chemistry Brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics

Protein And Nucleic Acid Structure And Dynamics

Author: Jonathan King
Editor: Benjamin-Cummings Publishing Company
ISBN:
File Size: 14,72 MB
Format: PDF, Kindle
Read: 2557
Download


Molecular Modeling At The Atomic Scale

Author: Ruhong Zhou
Editor: CRC Press
ISBN: 1466562951
File Size: 26,55 MB
Format: PDF, ePub, Docs
Read: 3565
Download

Although molecular modeling has been around for a while, the groundbreaking advancement of massively parallel supercomputers and novel algorithms for parallelization is shaping this field into an exciting new area. Developments in molecular modeling from experimental and computational techniques have enabled a wide range of biological applications. Responding to this renaissance, Molecular Modeling at the Atomic Scale: Methods and Applications in Quantitative Biology includes discussions of advanced techniques of molecular modeling and the latest research advancements in biomolecular applications from leading experts. The book begins with a brief introduction of major methods and applications, then covers the development of cutting-edge methods/algorithms, new polarizable force fields, and massively parallel computing techniques, followed by descriptions of how these novel techniques can be applied in various research areas in molecular biology. It also examines the self-assembly of biomacromolecules, including protein folding, RNA folding, amyloid peptide aggregation, and membrane lipid bilayer formation. Additional topics highlight biomolecular interactions, including protein interactions with DNA/RNA, membrane, ligands, and nanoparticles. Discussion of emerging topics in biomolecular modeling such as DNA sequencing with solid-state nanopores and biological water under nanoconfinement round out the coverage. This timely summary contains the perspectives of leading experts on this transformation in molecular biology and includes state-of-the-art examples of how molecular modeling approaches are being applied to critical questions in modern quantitative biology. It pulls together the latest research and applications of molecular modeling and real-world expertise that can boost your research and development of applications in this rapidly changing field.

Structure Computation And Dynamics In Protein Nmr

Author: N. Rama Krishna
Editor: Springer Science & Business Media
ISBN: 0306459531
File Size: 66,87 MB
Format: PDF, Kindle
Read: 9196
Download

Volume 17 is the second in a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. Volume 16, with the subtitle Modern Techniques in Protein NMR , is the first in this series. These two volumes present some of the recent, significant advances in the biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volume some of the world s foremost experts who have provided broad leadership in advancing this field. Volume 16 contains - vances in two broad categories: I. Large Proteins, Complexes, and Membrane Proteins and II. Pulse Methods. Volume 17 contains major advances in: I. Com- tational Methods and II. Structure and Dynamics. The opening chapter of volume 17 starts with a consideration of some important aspects of modeling from spectroscopic and diffraction data by Wilfred van Gunsteren and his colleagues. The next two chapters deal with combined automated assignments and protein structure determination, an area of intense research in many laboratories since the traditional manual methods are often inadequate or laborious in handling large volumes of NMR data on large proteins. First, Werner Braun and his associates describe their experience with the NOAH/DIAMOD protocol developed in their laboratory.

Enzyme Functionality

Author: Allan Svendsen
Editor: CRC Press
ISBN: 0203913043
File Size: 40,35 MB
Format: PDF, ePub, Mobi
Read: 3186
Download

Enzyme Functionality serves as a conduit for trailblazing research in enzyme engineering-relating current understanding of sequence families, the new notion of enzyme structure classes, and modern methods in protein engineering, design, and directed evolution to accelerate the development of novel enzyme functionalities. This reference gathers the

Proteins

Author: Charles L. Brooks
Editor: John Wiley & Sons
ISBN: 0470141816
File Size: 75,50 MB
Format: PDF, Mobi
Read: 1869
Download

Presenting a wide-ranging view of current developments in protein research, the papers in this collection, each written by highly regarded experts in the field, examine various aspects of protein structure, functions, dynamics, and experimentation. Topics include dynamical simulation methods, the biological role of atom fluctuations, protein folding, influences on protein dynamics, and a variety of analytical techniques, such as X-ray diffraction, vibrational spectroscopy, photodissociation and rebinding kinetics. This is part of a series devoted to providing general information on a wide variety of topics in chemical physics in order to stimulate new research and to serve as a text for beginners in a particular area of chemical physics.

Linking Protein Dynamics To Protein Function

Author: Olayinka Aduke Oyeyemi
Editor:
ISBN:
File Size: 10,27 MB
Format: PDF, ePub, Mobi
Read: 517
Download


Esr Spectroscopy In Membrane Biophysics

Author: Marcus A. Hemminga
Editor: Springer Science & Business Media
ISBN: 0387493670
File Size: 41,50 MB
Format: PDF
Read: 3239
Download

Starting from a comprehensive quantum mechanical description, this book introduces the optical (IR, Raman, UV/Vis, CD, fluorescence and laser spectroscopy) and magnetic resonance (1D and 2D-NMR, ESR) techniques. The book offers a timely review of the increasing interest in using spin-label ESR as an alternative structural technique for NMR or X-ray diffraction. Future aspects are treated as well, but only as an illustration of the progress of ESR in this field.

Nmr For Chemists And Biologists

Author: Rodrigo J Carbajo
Editor: Springer Science & Business Media
ISBN: 9400769768
File Size: 11,65 MB
Format: PDF, Kindle
Read: 8655
Download

This book intends to be an easy and concise introduction to the field of nuclear magnetic resonance or NMR, which has revolutionized life sciences in the last twenty years. A significant part of the progress observed in scientific areas like Chemistry, Biology or Medicine can be ascribed to the development experienced by NMR in recent times. Many of the books currently available on NMR deal with the theoretical basis and some of its main applications, but they generally demand a strong background in Physics and Mathematics for a full understanding. This book is aimed to a wide scientific audience, trying to introduce NMR by making all possible effort to remove, without losing any formality and rigor, most of the theoretical jargon that is present in other NMR books. Furthermore, illustrations are provided that show all the basic concepts using a naive vector formalism, or using a simplified approach to the particular NMR-technique described. The intention has been to show simply the foundations and main concepts of NMR, rather than seeking thorough mathematical expressions.

Biological Nmr Spectroscopy

Author: John L. Markley
Editor: Oxford University Press
ISBN: 9780195357424
File Size: 75,55 MB
Format: PDF, ePub, Docs
Read: 9712
Download

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.

Neutron Scattering In Biology

Author: Jörg Fitter
Editor: Springer Science & Business Media
ISBN: 9783540291084
File Size: 79,61 MB
Format: PDF, Kindle
Read: 4589
Download

The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

Molecular Electrostatic Potentials

Author: J.S. Murray
Editor: Elsevier
ISBN: 9780080536859
File Size: 59,24 MB
Format: PDF, Docs
Read: 6183
Download

Over the past 25 years, the molecular electrostatic potential has become firmly established as an effective guide to molecular interactions. With the recent advances in computational technology, it is currently being applied to a variety of important chemical and biological systems. Its range of applicability has expanded from primarily a focus on sites for electrophilic and nucleophilic attack to now include solvent effects, studies of zeolite, molecular cluster and crystal behavior, and the correlation and prediction of a wide range of macroscopic properties. Moreover, the increasing prominence of density functional theory has raised the molecular electrostatic potential to a new stature on a more fundamental conceptual level. It is rigorously defined in terms of the electron density, and has very interesting topological characteristics since it explicitly reflects opposing contributions from the nuclei and the electrons. This volume opens with a survey chapter by one of the original pioneers of the use of the electrostatic potential in studies of chemical reactivity, Jacopo Tomasi. Though the flow of the succeeding chapters is not stringently defined, the overall trend is that the emphasis changes gradually from methodology to applications. Chapters discussing more theoretical topics are placed near the end. Readers will find the wide variety of topics provided by an international group of authors both convincing and useful.

Supramolecular Structure And Function 8

Author: Greta Pifat-Mrzljak
Editor: Springer Science & Business Media
ISBN: 9780306486616
File Size: 27,89 MB
Format: PDF, Mobi
Read: 6406
Download

This volume covers some powerful biophysical methods, such as analytical centrifugation, mass spectrometry, fluorescence spectroscopy, electron spin resonance and nuclear magnetic resonance, for the study of complex biological structures, and discusses useful physical concepts as applied to biological and biochemical systems. Case-orientated studies concentrating on particular methodologies are presented and examples are given, addressing some of the most important aspects of structure-function relationship in biological assemblies. Biophysics nowadays collaborates closely with molecular biology and bioinformatics and this is also demonstrated in this book. The book will be of interest both to experienced researchers wishing to widen their insight into molecular structure and function, and to younger scientists at the doctoral and postdoctoral level interested in the molecular nature of fundamental biological entities and phenomena.

Molecular Dynamics And Protein Structure

Author: Jan Hermans
Editor:
ISBN:
File Size: 76,44 MB
Format: PDF, ePub, Docs
Read: 9224
Download


Terahertz Sensing Technology

Author: William R. Loerop
Editor: World Scientific
ISBN: 9789812796660
File Size: 46,79 MB
Format: PDF
Read: 3587
Download

The last research frontier in high frequency electronics lies in the so-called terahertz (or submillimeter wave) regime, between the traditional microwave and the infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book provides a detailed review of the new THz frequency technological developments that are emerging across a wide spectrum of sensing and technology areas. Volume II presents cutting edge results in two primary areas: (1) research that is attempting to establish THz-frequency sensing as a new characterization tool for chemical, biological and semiconductor materials, and (2) theoretical and experimental efforts to define new device concepts within the OC THz gapOCO. Contents: THz-Frequency Spectroscopic Sensing of DNA and Related Biological Materials (T Globus et al.); Spectroscopy with Electronic Terahertz Techniques for Chemical and Biological Sensing (M K Choi et al.); Terahertz Applications to Biomolecular Sensing (A G Markelz & S E Whitmire); Characteristics of Nano-Scale Composites at THz and IR Spectral Regions (J F Federici & H Grebel); Fundamentals of Terrestrial Millimeter-Wave and THz Remote Sensing (E R Brown); Terahertz Emission Using Quantum Dots and Microcavities (G S Solomon et al.); Terahertz Transport in Semiconductor Quantum Structures (S J Allen & J S Scott); Advanced Theory of Instability in Tunneling Nanostructures (D L Woolard et al.); Wigner Function Simulations of Quantum DeviceOCoCircuits Interactions (H L Grubin & R C Buggeln); Continuous-Wave Terahertz Spectroscopy of Plasmas and Biomolecules (D F Plusquellic et al.). Readership: Undergraduates, graduate students, academics and researchers in engineering and science."

Numerical Simulation In Molecular Dynamics

Author: Michael Griebel
Editor: Springer Science & Business Media
ISBN: 3540680950
File Size: 38,40 MB
Format: PDF, ePub
Read: 4637
Download

This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.

Molecular Biophysics For The Life Sciences

Author: Norma Allewell
Editor: Springer Science & Business Media
ISBN: 1461485487
File Size: 67,32 MB
Format: PDF, Mobi
Read: 2906
Download

This volume provides an overview of the development and scope of molecular biophysics and in-depth discussions of the major experimental methods that enable biological macromolecules to be studied at atomic resolution. It also reviews the physical chemical concepts that are needed to interpret the experimental results and to understand how the structure, dynamics, and physical properties of biological macromolecules enable them to perform their biological functions. Reviews of research on three disparate biomolecular machines—DNA helicases, ATP synthases, and myosin--illustrate how the combination of theory and experiment leads to new insights and new questions.

Nuclear Magnetic Resonance

Author: G. A. Webb
Editor: Royal Society of Chemistry
ISBN: 1847559220
File Size: 51,74 MB
Format: PDF, ePub
Read: 2492
Download

As a spectroscopic method, nuclear magnetic resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: ""NMR of Proteins and Nucleic Acids"" and ""NMR of Carbohydrates, Lipids and Membranes"". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications.

Comprehensive Biomaterials

Author: Paul Ducheyne
Editor: Elsevier
ISBN: 0080552943
File Size: 47,75 MB
Format: PDF, Docs
Read: 3449
Download

Comprehensive Biomaterials brings together the myriad facets of biomaterials into one, major series of six edited volumes that would cover the field of biomaterials in a major, extensive fashion: Volume 1: Metallic, Ceramic and Polymeric Biomaterials Volume 2: Biologically Inspired and Biomolecular Materials Volume 3: Methods of Analysis Volume 4: Biocompatibility, Surface Engineering, and Delivery Of Drugs, Genes and Other Molecules Volume 5: Tissue and Organ Engineering Volume 6: Biomaterials and Clinical Use Experts from around the world in hundreds of related biomaterials areas have contributed to this publication, resulting in a continuum of rich information appropriate for many audiences. The work addresses the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, and strategic insights for those entering and operational in diverse biomaterials applications, research and development, regulatory management, and commercial aspects. From the outset, the goal was to review materials in the context of medical devices and tissue properties, biocompatibility and surface analysis, tissue engineering and controlled release. It was also the intent both, to focus on material properties from the perspectives of therapeutic and diagnostic use, and to address questions relevant to state-of-the-art research endeavors. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance as well as future prospects Presents appropriate analytical methods and testing procedures in addition to potential device applications Provides strategic insights for those working on diverse application areas such as R&D, regulatory management, and commercial development