An Introduction To Genetic Algorithms

Author: Melanie Mitchell
Editor: MIT Press
ISBN: 9780262631853
Size: 20,76 MB
Format: PDF, Docs
Read: 853
Download

Genetic algorithms are used in science and engineering for problem solving and as computational models. This brief introduction enables readers to implement and experiment with genetic algorithms on their own. The descriptions of applications and modeling projects stretch beyond the boundaries of computer science to include systems theory, game theory, biology, ecology, and population genetics. 20 illustrations.

Introduction To Genetic Algorithms

Author: S.N. Sivanandam
Editor: Springer Science & Business Media
ISBN: 3540731903
Size: 13,66 MB
Format: PDF, ePub, Docs
Read: 576
Download

This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.

An Introduction To Genetic Algorithms For Scientists And Engineers

Author: David A. Coley
Editor: World Scientific
ISBN: 9789810236021
Size: 20,22 MB
Format: PDF, ePub, Mobi
Read: 957
Download

This invaluable book has been designed to be useful to most practising scientists and engineers, whatever their field and however rusty their mathematics and programming might be. The approach taken is largely practical, with algorithms being presented in full and working code (in BASIC, FORTRAN, PASCAL AND C) included on a floppy disk to help the reader get up and running as quickly as possible. The text could also be used as part of an undergraduate course on search and optimisation. Student exercises are included at the end of several of the chapters, many of which are computer-based and designed to encourage exploration of the method.

Genetic Algorithms And Engineering Optimization

Author: Mitsuo Gen
Editor: John Wiley & Sons
ISBN: 9780471315315
Size: 17,87 MB
Format: PDF, Docs
Read: 755
Download

A comprehensive guide to a powerful new analytical tool by two of its foremost innovators The past decade has witnessed many exciting advances in the use of genetic algorithms (GAs) to solve optimization problems in everything from product design to scheduling and client/server networking. Aided by GAs, analysts and designers now routinely evolve solutions to complex combinatorial and multiobjective optimization problems with an ease and rapidity unthinkable withconventional methods. Despite the continued growth and refinement of this powerful analytical tool, there continues to be a lack of up-to-date guides to contemporary GA optimization principles and practices. Written by two of the world's leading experts in the field, this book fills that gap in the literature. Taking an intuitive approach, Mitsuo Gen and Runwei Cheng employ numerous illustrations and real-world examples to help readers gain a thorough understanding of basic GA concepts-including encoding, adaptation, and genetic optimizations-and to show how GAs can be used to solve an array of constrained, combinatorial, multiobjective, and fuzzy optimization problems. Focusing on problems commonly encountered in industry-especially in manufacturing-Professors Gen and Cheng provide in-depth coverage of advanced GA techniques for: * Reliability design * Manufacturing cell design * Scheduling * Advanced transportation problems * Network design and routing Genetic Algorithms and Engineering Optimization is an indispensable working resource for industrial engineers and designers, as well as systems analysts, operations researchers, and management scientists working in manufacturing and related industries. It also makes an excellent primary or supplementary text for advanced courses in industrial engineering, management science, operations research, computer science, and artificial intelligence.

Genetic Algorithms In Java Basics

Author: Lee Jacobson
Editor: Apress
ISBN: 1484203283
Size: 19,10 MB
Format: PDF, ePub
Read: 199
Download

Genetic Algorithms in Java Basics is a brief introduction to solving problems using genetic algorithms, with working projects and solutions written in the Java programming language. This brief book will guide you step-by-step through various implementations of genetic algorithms and some of their common applications, with the aim to give you a practical understanding allowing you to solve your own unique, individual problems. After reading this book you will be comfortable with the language specific issues and concepts involved with genetic algorithms and you'll have everything you need to start building your own. Genetic algorithms are frequently used to solve highly complex real world problems and with this book you too can harness their problem solving capabilities. Understanding how to utilize and implement genetic algorithms is an essential tool in any respected software developers toolkit. So step into this intriguing topic and learn how you too can improve your software with genetic algorithms, and see real Java code at work which you can develop further for your own projects and research. Guides you through the theory behind genetic algorithms Explains how genetic algorithms can be used for software developers trying to solve a range of problems Provides a step-by-step guide to implementing genetic algorithms in Java

Introduction To Evolutionary Computing

Author: Agoston E. Eiben
Editor: Springer Science & Business Media
ISBN: 3662050943
Size: 10,85 MB
Format: PDF, ePub, Mobi
Read: 920
Download

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

Evolutionary Computation 1

Author: Thomas Baeck
Editor: CRC Press
ISBN: 9780750306645
Size: 16,46 MB
Format: PDF
Read: 404
Download

The field of evolutionary computation is expanding dramatically, fueled by the vast investment that reflects the value of applying its techniques. Culling material from the Handbook of Evolutionary Computation, Evolutionary Computation 1: Basic Algorithms and Operators contains up-to-date information on algorithms and operators used in evolutionary computing. This volume discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is intended to be used by individual researchers, teachers, and students working and studying in this expanding field.

Introduction To Evolutionary Algorithms

Author: Xinjie Yu
Editor: Springer Science & Business Media
ISBN: 9781849961295
Size: 14,69 MB
Format: PDF, ePub, Docs
Read: 685
Download

Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.

Genetic Programming

Author: John R. Koza
Editor: MIT Press
ISBN: 9780262111706
Size: 13,46 MB
Format: PDF, ePub, Docs
Read: 781
Download

In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic programming may be more powerful than neural networks and other machine learning techniques, able to solve problems in a wider range of disciplines. In this ground-breaking book, John Koza shows how this remarkable paradigm works and provides substantial empirical evidence that solutions to a great variety of problems from many different fields can be found by genetically breeding populations of computer programs. Genetic Programming contains a great many worked examples and includes a sample computer code that will allow readers to run their own programs.In getting computers to solve problems without being explicitly programmed, Koza stresses two points: that seemingly different problems from a variety of fields can be reformulated as problems of program induction, and that the recently developed genetic programming paradigm provides a way to search the space of possible computer programs for a highly fit individual computer program to solve the problems of program induction. Good programs are found by evolving them in a computer against a fitness measure instead of by sitting down and writing them.

Genetic Algorithms With Python

Author: Clinton Sheppard
Editor:
ISBN: 9781732029804
Size: 15,21 MB
Format: PDF, ePub, Docs
Read: 984
Download

Get a hands-on introduction to machine learning with genetic algorithms using Python. Genetic algorithms are one of the tools you can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. This book gives you experience making genetic algorithms work for you, using easy-to-follow example projects that you can fall back upon when learning to use other machine learning tools and techniques. The step-by-step tutorials build your skills from Hello World! to optimizing one genetic algorithm with another, and finally genetic programming; thus preparing you to apply genetic algorithms to problems in your own field of expertise. Python is a high-level, low ceremony and powerful language whose code can be easily understood even by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction. Souce code: https: //github.com/handcraftsman/GeneticAlgorithmsWithPython