Learning Social Media Analytics With R

Author: Raghav Bali
Editor: Packt Publishing Ltd
ISBN: 1787125467
File Size: 47,55 MB
Format: PDF, Kindle
Read: 6029
Download

Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.

Social Media Mining With R

Author: Nathan Danneman
Editor: Packt Publishing Ltd
ISBN: 1783281782
File Size: 19,22 MB
Format: PDF, ePub
Read: 8570
Download

A concise, hands-on guide with many practical examples and a detailed treatise on inference and social science research that will help you in mining data in the real world. Whether you are an undergraduate who wishes to get hands-on experience working with social data from the Web, a practitioner wishing to expand your competencies and learn unsupervised sentiment analysis, or you are simply interested in social data analysis, this book will prove to be an essential asset. No previous experience with R or statistics is required, though having knowledge of both will enrich your experience.

Mastering Social Media Mining With R

Author: Sharan Kumar Ravindran
Editor: Packt Publishing Ltd
ISBN: 1784399671
File Size: 19,43 MB
Format: PDF, ePub, Docs
Read: 8148
Download

Extract valuable data from your social media sites and make better business decisions using R About This Book Explore the social media APIs in R to capture data and tame it Employ the machine learning capabilities of R to gain optimal business value A hands-on guide with real-world examples to help you take advantage of the vast opportunities that come with social media data Who This Book Is For If you have basic knowledge of R in terms of its libraries and are aware of different machine learning techniques, this book is for you. Those with experience in data analysis who are interested in mining social media data will find this book useful. What You Will Learn Access APIs of popular social media sites and extract data Perform sentiment analysis and identify trending topics Measure CTR performance for social media campaigns Implement exploratory data analysis and correlation analysis Build a logistic regression model to detect spam messages Construct clusters of pictures using the K-means algorithm and identify popular personalities and destinations Develop recommendation systems using Collaborative Filtering and the Apriori algorithm In Detail With an increase in the number of users on the web, the content generated has increased substantially, bringing in the need to gain insights into the untapped gold mine that is social media data. For computational statistics, R has an advantage over other languages in providing readily-available data extraction and transformation packages, making it easier to carry out your ETL tasks. Along with this, its data visualization packages help users get a better understanding of the underlying data distributions while its range of "standard" statistical packages simplify analysis of the data. This book will teach you how powerful business cases are solved by applying machine learning techniques on social media data. You will learn about important and recent developments in the field of social media, along with a few advanced topics such as Open Authorization (OAuth). Through practical examples, you will access data from R using APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and other networks. We will provide you with detailed explanations on the implementation of various use cases using R programming. With this handy guide, you will be ready to embark on your journey as an independent social media analyst. Style and approach This easy-to-follow guide is packed with hands-on, step-by-step examples that will enable you to convert your real-world social media data into useful, practical information.

The Oxford Handbook Of Social Media And Music Learning

Author: Janice L. Waldron
Editor: Oxford University Press, USA
ISBN: 0190660775
File Size: 27,32 MB
Format: PDF, ePub
Read: 8312
Download

The Oxford Handbook of Social Media and Music Learning provides fascinating insights into the ways in which social media, musical participation, and musical learning are increasingly entwined.

Social Network Forensics Cyber Security And Machine Learning

Author: P. Venkata Krishna
Editor: Springer
ISBN: 981131456X
File Size: 31,22 MB
Format: PDF
Read: 3380
Download

This book discusses the issues and challenges in Online Social Networks (OSNs). It highlights various aspects of OSNs consisting of novel social network strategies and the development of services using different computing models. Moreover, the book investigates how OSNs are impacted by cutting-edge innovations.

Machine Learning And Artificial Intelligence

Author: A.J. Tallón-Ballesteros
Editor: IOS Press
ISBN: 1643681370
File Size: 42,87 MB
Format: PDF, ePub, Mobi
Read: 9021
Download

Machine learning and artificial intelligence are already widely applied to facilitate our daily lives, as well as scientific research, but with the world currently facing a global COVID-19 pandemic, their capacity to provide an important tool to support those searching for a way to combat the novel corona virus has never been more important. This book presents the proceedings of the International Conference on Machine Learning and Intelligent Systems (MLIS 2020), which was due to be held in Seoul, Korea, from 25-28 October 2020, but which was delivered as an online conference on the same dates due to COVID-19 restrictions. MLIS 2020 was the latest in a series of annual conferences that aim to provide a platform for exchanging knowledge about the most recent scientific and technological advances in the field of machine learning and intelligent systems. The annual conference also strengthens links within the scientific community in related research areas. The book contains 53 papers, selected from more than 160 submissions and presented at MLIS 2020. Selection was based on the results of review and scored on: originality, scientific/practical significance, compelling logical reasoning and language. Topics covered include: data mining, image processing, neural networks, human health, natural language processing, video processing, computational intelligence, expert systems, human-computer interaction, deep learning, and robotics. Offering a current overview of research and developments in machine learning and artificial intelligence, the book will be of interest to all those working in the field.

Probabilistic Approaches For Social Media Analysis

Author: Kun Yue
Editor:
ISBN: 9811207380
File Size: 47,34 MB
Format: PDF, Mobi
Read: 4702
Download

"This unique compendium focuses on the acquisition and analysis of social media data. The approaches concern both the data-intensive characteristics and graphical structures of social media. The book addresses the critical problems in social media analysis, which representatively cover its lifecycle. The must-have volume is an excellent reference text for professionals, researchers, academics and graduate students in AI and databases"--

Python For R Users

Author: Ajay Ohri
Editor: John Wiley & Sons
ISBN: 1119126762
File Size: 41,52 MB
Format: PDF, ePub, Docs
Read: 861
Download

The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent programming features and functions, including data input, data inspection/data quality, data analysis, and data visualization. Statistical modeling, machine learning, and data mining—including supervised and unsupervised data mining methods—are treated in detail, as are time series forecasting, text mining, and natural language processing. • Features a quick-learning format with concise tutorials and actionable analytics • Provides command-by-command translations of R to Python and vice versa • Incorporates Python and R code throughout to make it easier for readers to compare and contrast features in both languages • Offers numerous comparative examples and applications in both programming languages • Designed for use for practitioners and students that know one language and want to learn the other • Supplies slides useful for teaching and learning either software on a companion website Python for R Users: A Data Science Approach is a valuable working resource for computer scientists and data scientists that know R and would like to learn Python or are familiar with Python and want to learn R. It also functions as textbook for students of computer science and statistics. A. Ohri is the founder of Decisionstats.com and currently works as a senior data scientist. He has advised multiple startups in analytics off-shoring, analytics services, and analytics education, as well as using social media to enhance buzz for analytics products. Mr. Ohri's research interests include spreading open source analytics, analyzing social media manipulation with mechanism design, simpler interfaces for cloud computing, investigating climate change and knowledge flows. His other books include R for Business Analytics and R for Cloud Computing.

R Machine Learning By Example

Author: Raghav Bali
Editor: Packt Publishing Ltd
ISBN: 1784392634
File Size: 31,97 MB
Format: PDF, Docs
Read: 7013
Download

Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully About This Book Get to grips with the concepts of machine learning through exciting real-world examples Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning Learn to build your own machine learning system with this example-based practical guide Who This Book Is For If you are interested in mining useful information from data using state-of-the-art techniques to make data-driven decisions, this is a go-to guide for you. No prior experience with data science is required, although basic knowledge of R is highly desirable. Prior knowledge in machine learning would be helpful but is not necessary. What You Will Learn Utilize the power of R to handle data extraction, manipulation, and exploration techniques Use R to visualize data spread across multiple dimensions and extract useful features Explore the underlying mathematical and logical concepts that drive machine learning algorithms Dive deep into the world of analytics to predict situations correctly Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action Write reusable code and build complete machine learning systems from the ground up Solve interesting real-world problems using machine learning and R as the journey unfolds Harness the power of robust and optimized R packages to work on projects that solve real-world problems in machine learning and data science In Detail Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems. This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems. You'll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms. Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R. Style and approach The book is an enticing journey that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning.

R For Business Analytics

Author: A Ohri
Editor: Springer Science & Business Media
ISBN: 1461443431
File Size: 15,46 MB
Format: PDF, ePub
Read: 5901
Download

R for Business Analytics looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages. With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut down and bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics. This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The book utilizes Albert Einstein’s famous remarks on making things as simple as possible, but no simpler. This book will blow the last remaining doubts in your mind about using R in your business environment. Even non-technical users will enjoy the easy-to-use examples. The interviews with creators and corporate users of R make the book very readable. The author firmly believes Isaac Asimov was a better writer in spreading science than any textbook or journal author.

A Critical Hypertext Analysis Of Social Media

Author: Volker Eisenlauer
Editor: A&C Black
ISBN: 1441159703
File Size: 55,28 MB
Format: PDF, ePub
Read: 7441
Download

Facebook, in just a few years, has become one of the central tools people use to communicate with each other in everyday life. However, the perceived freedom of action on the site and the actual processes that are permitted in Facebook's set up don't always match up: in this book this gap is examined. This book identifies the interrelations between user text actions and the software environment framing them. It takes a critical perspective on Facebook and develops a model that grants methodological access to complex interlaced practices incorporating media, text and literacies. It shows Facebook users employing idiosyncratic and Facebook-specific literacy practices, and gives weight to the larger hypothesis of the software service as an ideological setting designed to calculate and standardize human behaviour. Specifically, the book examines text action and automation within Facebook to determine how the software service intervenes in the communicative flow between/among profile owners and profile recipients. This is cutting edge work and of huge importance to modern fields of discourse analysis and computer-mediated communication.

R Data Analysis Projects

Author: Gopi Subramanian
Editor: Packt Publishing Ltd
ISBN: 1788620577
File Size: 24,28 MB
Format: PDF, ePub
Read: 7272
Download

Get valuable insights from your data by building data analysis systems from scratch with R. About This Book A handy guide to take your understanding of data analysis with R to the next level Real-world projects that focus on problems in finance, network analysis, social media, and more From data manipulation to analysis to visualization in R, this book will teach you everything you need to know about building end-to-end data analysis pipelines using R Who This Book Is For If you are looking for a book that takes you all the way through the practical application of advanced and effective analytics methodologies in R, then this is the book for you. A fundamental understanding of R and the basic concepts of data analysis is all you need to get started with this book. What You Will Learn Build end-to-end predictive analytics systems in R Build an experimental design to gather your own data and conduct analysis Build a recommender system from scratch using different approaches Use and leverage RShiny to build reactive programming applications Build systems for varied domains including market research, network analysis, social media analysis, and more Explore various R Packages such as RShiny, ggplot, recommenderlab, dplyr, and find out how to use them effectively Communicate modeling results using Shiny Dashboards Perform multi-variate time-series analysis prediction, supplemented with sensitivity analysis and risk modeling In Detail R offers a large variety of packages and libraries for fast and accurate data analysis and visualization. As a result, it's one of the most popularly used languages by data scientists and analysts, or anyone who wants to perform data analysis. This book will demonstrate how you can put to use your existing knowledge of data analysis in R to build highly efficient, end-to-end data analysis pipelines without any hassle. You'll start by building a content-based recommendation system, followed by building a project on sentiment analysis with tweets. You'll implement time-series modeling for anomaly detection, and understand cluster analysis of streaming data. You'll work through projects on performing efficient market data research, building recommendation systems, and analyzing networks accurately, all provided with easy to follow codes. With the help of these real-world projects, you'll get a better understanding of the challenges faced when building data analysis pipelines, and see how you can overcome them without compromising on the efficiency or accuracy of your systems. The book covers some popularly used R packages such as dplyr, ggplot2, RShiny, and others, and includes tips on using them effectively. By the end of this book, you'll have a better understanding of data analysis with R, and be able to put your knowledge to practical use without any hassle. Style and approach This book takes a unique, learn-as-you-do approach, as you build on your understanding of data analysis progressively with each project. This book is designed in a way that implementing each project will empower you with a unique skill set, and enable you to implement the next project more confidently.

People Analytics Text Mining With R

Author: Mong Shen Ng
Editor: Independently Published
ISBN: 9781091118539
File Size: 42,28 MB
Format: PDF, Docs
Read: 7331
Download

You don't need to buy expensive statistical software like SPSS. This book teaches you R (R can be downloaded for free), People Analytics, Social Media Analytics, Text Mining and Sentiment Analysis. It is written for people with absolutely NO knowledge of R programming, with step-by-step print-screen instructions. The sample R codes are kept simple & short so that you are not overwhelmed with too much unnecessary information, and focuses on teaching you the R codes relevant to people analytics, so that you'll be up-and-running in no time. If you are new to R programming, this is the book for you. As R is developed specially for statistical analysis, you can run complicated statistical number crunching (Correlation, Multiple & Logistic Regression, etc.) by simply entering a few commands. This book covers the full People Analytics scope (Benefits, Compensation, Culture, Diversity & Inclusion, Engagement, Leadership, Learning & Development, Personality Traits, Performance Management, Recruitment, Sales Incentives) with numerous real-world examples, and shows how R programming can help you: 1) Run Social Media Analytics, Text mining & Sentiment Analysis with R. 2) Predict employees' flight-risk using R's Correlation & Logistic Regression function. 3) Identify the personality traits of top performing Customer Service staff and Sales staff using R's correlation function. 4) Predict impact of Employee Engagement on Customer Satisfaction, Revenue and Shareholder Returns, etc. using R's Correlation & Multiple Regression function. 5) Predict impact of Learning & Development on Sales, using R's Multiple Regression function. 6) Predict Diversity & Inclusion's impact on Revenue and EBIT using R's Multiple Regression function.

Education On Digital Cultural And Social Media

Author: Dr. S. Saileela and Dr. S. Kalaivani
Editor: Lulu.com
ISBN: 0359895069
File Size: 15,55 MB
Format: PDF, ePub
Read: 2854
Download


Learning Data Mining With R

Author: Bater Makhabel
Editor: Packt Publishing Ltd
ISBN: 178398211X
File Size: 33,69 MB
Format: PDF, Docs
Read: 3370
Download

This book is intended for the budding data scientist or quantitative analyst with only a basic exposure to R and statistics. This book assumes familiarity with only the very basics of R, such as the main data types, simple functions, and how to move data around. No prior experience with data mining packages is necessary; however, you should have a basic understanding of data mining concepts and processes.

R Mining Spatial Text Web And Social Media Data

Author: Bater Makhabel
Editor: Packt Publishing Ltd
ISBN: 178829081X
File Size: 63,43 MB
Format: PDF, Docs
Read: 6104
Download

Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniques to real-world social media data using R Who This Book Is For This Learning Path is for R developers who are looking to making a career in data analysis or data mining. Those who come across data mining problems of different complexities from web, text, numerical, political, and social media domains will find all information in this single learning path. What You Will Learn Discover how to manipulate data in R Get to know top classification algorithms written in R Explore solutions written in R based on R Hadoop projects Apply data management skills in handling large data sets Acquire knowledge about neural network concepts and their applications in data mining Create predictive models for classification, prediction, and recommendation Use various libraries on R CRAN for data mining Discover more about data potential, the pitfalls, and inferencial gotchas Gain an insight into the concepts of supervised and unsupervised learning Delve into exploratory data analysis Understand the minute details of sentiment analysis In Detail Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining. You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects. After this, you will gain hands-on experience of generating insights from social media data. You will get detailed instructions on how to obtain, process, and analyze a variety of socially-generated data while providing a theoretical background to accurately interpret your findings. You will be shown R code and examples of data that can be used as a springboard as you get the chance to undertake your own analyses of business, social, or political data. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Learning Data Mining with R by Bater Makhabel R Data Mining Blueprints by Pradeepta Mishra Social Media Mining with R by Nathan Danneman and Richard Heimann Style and approach A complete package with which will take you from the basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining.

Human Capital Analytics

Author: Gene Pease
Editor: John Wiley & Sons
ISBN: 1118506995
File Size: 19,90 MB
Format: PDF, ePub, Mobi
Read: 7123
Download

An insightful look at the implementation of advanced analytics on human capital Human capital analytics, also known as human resources analytics or talent analytics, is the application of sophisticated data mining and business analytics techniques to human resources data. Human Capital Analytics provides an in-depth look at the science of human capital analytics, giving practical examples from case studies of companies applying analytics to their people decisions and providing a framework for using predictive analytics to optimize human capital investments. Written by Gene Pease, Boyce Byerly, and Jac Fitz-enz, widely regarded as the father of human capital Offers practical examples from case studies of companies applying analytics to their people decisions An in-depth discussion of tools needed to do the work, particularly focusing on multivariate analysis The challenge of human resources analytics is to identify what data should be captured and how to use the data to model and predict capabilities so the organization gets an optimal return on investment on its human capital. The goal of human capital analytics is to provide an organization with insights for effectively managing employees so that business goals can be reached quickly and efficiently. Written by human capital analytics specialists Gene Pease, Boyce Byerly, and Jac Fitz-enz, Human Capital Analytics provides essential action steps for implementation of advanced analytics on human capital.

Aggression A Social Learning Analysis

Author: Albert Bandura
Editor: Prentice Hall
ISBN:
File Size: 27,19 MB
Format: PDF
Read: 1520
Download

This book is concerned with why man aggresses. There are several reasons for addressing this issue, despite the great deal of attention that has already been devoted to it. Although aggression pervades our lives, few concerted efforts have been made to substantiate its causes or to devise constructive ways of reducing the level of societal violence.

R Data Science Essentials

Author: Raja B. Koushik
Editor: Packt Publishing Ltd
ISBN: 1785286366
File Size: 32,38 MB
Format: PDF, Docs
Read: 9749
Download

Learn the essence of data science and visualization using R in no time at all About This Book Become a pro at making stunning visualizations and dashboards quickly and without hassle For better decision making in business, apply the R programming language with the help of useful statistical techniques. From seasoned authors comes a book that offers you a plethora of fast-paced techniques to detect and analyze data patterns Who This Book Is For If you are an aspiring data scientist or analyst who has a basic understanding of data science and has basic hands-on experience in R or any other analytics tool, then R Data Science Essentials is the book for you. What You Will Learn Perform data preprocessing and basic operations on data Implement visual and non-visual implementation data exploration techniques Mine patterns from data using affinity and sequential analysis Use different clustering algorithms and visualize them Implement logistic and linear regression and find out how to evaluate and improve the performance of an algorithm Extract patterns through visualization and build a forecasting algorithm Build a recommendation engine using different collaborative filtering algorithms Make a stunning visualization and dashboard using ggplot and R shiny In Detail With organizations increasingly embedding data science across their enterprise and with management becoming more data-driven it is an urgent requirement for analysts and managers to understand the key concept of data science. The data science concepts discussed in this book will help you make key decisions and solve the complex problems you will inevitably face in this new world. R Data Science Essentials will introduce you to various important concepts in the field of data science using R. We start by reading data from multiple sources, then move on to processing the data, extracting hidden patterns, building predictive and forecasting models, building a recommendation engine, and communicating to the user through stunning visualizations and dashboards. By the end of this book, you will have an understanding of some very important techniques in data science, be able to implement them using R, understand and interpret the outcomes, and know how they helps businesses make a decision. Style and approach This easy-to-follow guide contains hands-on examples of the concepts of data science using R.

Analysis Of Electronic Learning Communities Using A Social Network Perspective

Author: Hichang Cho
Editor:
ISBN:
File Size: 69,38 MB
Format: PDF, ePub, Mobi
Read: 5937
Download

The second study focused on the consequences of emergent social networks. The study examined the effects of ELC social networks on the achievement of two ultimate goals of an ELC--facilitating collective information sharing using public knowledge goods, and enhancing individual performance and satisfaction.