Machine Learning For Evolution Strategies

Author: Oliver Kramer
Editor: Springer
ISBN: 3319333836
File Size: 74,27 MB
Format: PDF, ePub, Docs
Read: 9924

This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

Synthetic Vision

Author: Scott Krig
Editor: De-G Press
ISBN: 1501505963
File Size: 17,41 MB
Format: PDF, ePub, Mobi
Read: 1744

In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cortex, and the high level PFC learning centers. The corresponding visual genome model (VGM), begun in 2014, is introduced herein as the basis for a visual genome project analogous to the Human Genome Project funded by the US government. The VGM introduces volume learning principles and Visual DNA (VDNA) taking a multivariate approach beyond deep neural networks. Volume learning is modeled as programmable learning and reasoning agents, providing rich methods for structured agent classification networks. Volume learning incorporates a massive volume of multivariate features in various data space projections, collected into strands of Visual DNA, analogous to human DNA genes. VGM lays a foundation for a visual genome project to sequence VDNA as visual genomes in a public database, using collaborative research to move synthetic vision science forward and enable new applications. Bibliographical references are provided to key neuroscience, computer vision, and deep learning research, which form the basis for the biologically plausible VGM model and the synthetic visual pathway. The book also includes graphical illustrations and C++ API reference materials to enable VGM application programming. Open source code licenses are available for engineers and scientists. Scott Krig founded Krig Research to provide some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Krig has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision, and studied at Stanford. Scott Krig is the author of the English/Chinese Springer book Computer Vision Metrics, Survey, Taxonomy and Analysis of Computer Vision, Visual Neuroscience, and Deep Learning, Textbook Edition, as well as other books, articles, and papers.

Ecai 2020

Author: G. De Giacomo
Editor: IOS Press
ISBN: 164368101X
File Size: 42,46 MB
Format: PDF, ePub, Mobi
Read: 2960

This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of more than 1,700 submissions was received for ECAI 2020, of which 1,443 were reviewed. Of these, 361 full-papers and 36 highlight papers were accepted (an acceptance rate of 25% for full-papers and 45% for highlight papers). The book is divided into three sections: ECAI full papers; ECAI highlight papers; and PAIS papers. The topics of these papers cover all aspects of AI, including Agent-based and Multi-agent Systems; Computational Intelligence; Constraints and Satisfiability; Games and Virtual Environments; Heuristic Search; Human Aspects in AI; Information Retrieval and Filtering; Knowledge Representation and Reasoning; Machine Learning; Multidisciplinary Topics and Applications; Natural Language Processing; Planning and Scheduling; Robotics; Safe, Explainable, and Trustworthy AI; Semantic Technologies; Uncertainty in AI; and Vision. The book will be of interest to all those whose work involves the use of AI technology.

Generative Deep Learning

Author: David Foster
Editor: O'Reilly Media
ISBN: 1492041912
File Size: 25,75 MB
Format: PDF, ePub, Docs
Read: 3379

Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN

Advances In Evolutionary Computing

Author: Ashish Ghosh
Editor: Springer Science & Business Media
ISBN: 9783540433309
File Size: 73,40 MB
Format: PDF, ePub, Docs
Read: 9189

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.

Genetic And Evolutionary Computation Gecco 2003

Author: Erick Cantú-Paz
Editor: Springer
ISBN: 3540451102
File Size: 35,61 MB
Format: PDF, Docs
Read: 2210

The set LNCS 2723 and LNCS 2724 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2003, held in Chicago, IL, USA in July 2003. The 193 revised full papers and 93 poster papers presented were carefully reviewed and selected from a total of 417 submissions. The papers are organized in topical sections on a-life adaptive behavior, agents, and ant colony optimization; artificial immune systems; coevolution; DNA, molecular, and quantum computing; evolvable hardware; evolutionary robotics; evolution strategies and evolutionary programming; evolutionary sheduling routing; genetic algorithms; genetic programming; learning classifier systems; real-world applications; and search based software engineering.

Genetic Algorithms Data Structures Evolution Programs

Author: Zbigniew Michalewicz
Editor: Springer Science & Business Media
ISBN: 3662033151
File Size: 21,53 MB
Format: PDF, ePub, Mobi
Read: 7808

Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.

Evolutionary Computation 1

Author: Thomas Baeck
Editor: CRC Press
ISBN: 9780750306645
File Size: 33,75 MB
Format: PDF, ePub, Docs
Read: 3683

The field of evolutionary computation is expanding dramatically, fueled by the vast investment that reflects the value of applying its techniques. Culling material from the Handbook of Evolutionary Computation, Evolutionary Computation 1: Basic Algorithms and Operators contains up-to-date information on algorithms and operators used in evolutionary computing. This volume discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is intended to be used by individual researchers, teachers, and students working and studying in this expanding field.

Artificial Evolution

File Size: 18,60 MB
Format: PDF, Mobi
Read: 4606

Reinforcement Learning Algorithms With Python

Author: Andrea Lonza
Editor: Packt Publishing Ltd
ISBN: 1789139708
File Size: 22,17 MB
Format: PDF, ePub, Mobi
Read: 3847

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries Key Features Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks Understand and develop model-free and model-based algorithms for building self-learning agents Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies Book Description Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community. What you will learn Develop an agent to play CartPole using the OpenAI Gym interface Discover the model-based reinforcement learning paradigm Solve the Frozen Lake problem with dynamic programming Explore Q-learning and SARSA with a view to playing a taxi game Apply Deep Q-Networks (DQNs) to Atari games using Gym Study policy gradient algorithms, including Actor-Critic and REINFORCE Understand and apply PPO and TRPO in continuous locomotion environments Get to grips with evolution strategies for solving the lunar lander problem Who this book is for If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You’ll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.

Knowledge Discovery In Big Data From Astronomy And Earth Observation

Author: Petr Skoda
ISBN: 0128191546
File Size: 68,30 MB
Format: PDF, ePub, Docs
Read: 4485

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.

Evolutionary Computation

Author: David B. Fogel
Editor: John Wiley & Sons
ISBN: 0471749206
File Size: 80,88 MB
Format: PDF, ePub
Read: 4846

This Third Edition provides the latest tools and techniques thatenable computers to learn The Third Edition of this internationally acclaimed publicationprovides the latest theory and techniques for using simulatedevolution to achieve machine intelligence. As a leading advocatefor evolutionary computation, the author has successfullychallenged the traditional notion of artificial intelligence, whichessentially programs human knowledge fact by fact, but does nothave the capacity to learn or adapt as evolutionary computationdoes. Readers gain an understanding of the history of evolutionarycomputation, which provides a foundation for the author's thoroughpresentation of the latest theories shaping current research.Balancing theory with practice, the author provides readers withthe skills they need to apply evolutionary algorithms that cansolve many of today's intransigent problems by adapting to newchallenges and learning from experience. Several examples areprovided that demonstrate how these evolutionary algorithms learnto solve problems. In particular, the author provides a detailedexample of how an algorithm is used to evolve strategies forplaying chess and checkers. As readers progress through the publication, they gain anincreasing appreciation and understanding of the relationshipbetween learning and intelligence. Readers familiar with theprevious editions will discover much new and revised material thatbrings the publication thoroughly up to date with the latestresearch, including the latest theories and empirical properties ofevolutionary computation. The Third Edition also features new knowledge-building aids.Readers will find a host of new and revised examples. New questionsat the end of each chapter enable readers to test their knowledge.Intriguing assignments that prepare readers to manage challenges inindustry and research have been added to the end of each chapter aswell. This is a must-have reference for professionals in computer andelectrical engineering; it provides them with the very latesttechniques and applications in machine intelligence. With itsquestion sets and assignments, the publication is also recommendedas a graduate-level textbook.

Evolutionary Algorithms For Solving Multi Objective Problems

Author: Carlos Coello Coello
Editor: Springer Science & Business Media
ISBN: 1475751842
File Size: 11,74 MB
Format: PDF, Mobi
Read: 3927

Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface.

Artificial Intelligence

Author: Michael Negnevitsky
Editor: Addison-Wesley
File Size: 17,53 MB
Format: PDF, Mobi
Read: 7209

Soft ComputingArtificial IntelligenceA Guide to Intelligent SystemsMichael NegnevitskyVirtually all the literature on artificial intelligence is expressed in the jargon of computer science, crowded with complex matrix algebra and differential equations. Unlike many other books on computer intelligence, this one demonstrates that most ideas behind intelligent systems are simple and straightforward. The book has evolved from lectures given to students with little knowledge of calculus, and the reader needs no prerequisites associated with knowledge of any programming language. The methods used in the book have been extensively tested through several courses given by the author.The book provides an introduction to the field of computer intelligence, covering rule-based expert systems, fuzzy expert systems, frame-based expert systems, artificial neural networks, evolutionary computation, hybrid intelligent systems, knowledge engineering, data mining.In a university setting the book can be used as an introductory course within computer science, information systems or engineering departments. The book is also suitable as a self-study guide for non-computer science professionals, giving a

The Evolutionary Origins Of Memory Use In Navigation

Author: Laura M. Grabowski
File Size: 74,87 MB
Format: PDF, Mobi
Read: 3038

Life Like Agents

Author: Filippo Menczer
File Size: 30,13 MB
Format: PDF, Kindle
Read: 3619