Nanoplasmonic Spectroscopic Imaging And Molecular Probes For Living Cells

Author: Yeonho Choi
Editor:
ISBN:
File Size: 45,66 MB
Format: PDF, Docs
Read: 1427
Download


Nanoplasmonic Sensors

Author: Alexandre Dmitriev
Editor: Springer Science & Business Media
ISBN: 1461439337
File Size: 75,68 MB
Format: PDF, Mobi
Read: 2136
Download

This book is a compendium of the finest research in nanoplasmonic sensing done around the world in the last decade. It describes basic theoretical considerations of nanoplasmons in the dielectric environment, gives examples of the multitude of applications of nanoplasmonics in biomedical and chemical sensing, and provides an overview of future trends in optical and non-optical nanoplasmonic sensing. Specifically, readers are guided through both the fundamentals and the latest research in the two major fields nanoplasmonic sensing is applied to – bio- and chemo-sensing – then given the state-of-the-art recipes used in nanoplasmonic sensing research.

Nanoplasmonics

Author: Grégory Barbillon
Editor: BoD – Books on Demand
ISBN: 9535132776
File Size: 41,44 MB
Format: PDF, ePub, Docs
Read: 2019
Download

Nanoplasmonics is a young topic of research, which is part of nanophotonics and nano-optics. Nanoplasmonics concerns to the investigation of electron oscillations in metallic nanostructures and nanoparticles. Surface plasmons have optical properties, which are very interesting. For instance, surface plasmons have the unique capacity to confine light at the nanoscale. Moreover, surface plasmons are very sensitive to the surrounding medium and the properties of the materials on which they propagate. In addition to the above, the surface plasmon resonances can be controlled by adjusting the size, shape, periodicity, and materials' nature. All these optical properties can enable a great number of applications, such as biosensors, optical modulators, photodetectors, and photovoltaic devices. This book is intended for a broad audience and provides an overview of some of the fundamental knowledges and applications of nanoplasmonics.

Aptamers Selected By Cell Selex For Theranostics

Author: Weihong Tan
Editor: Springer
ISBN: 3662462265
File Size: 32,83 MB
Format: PDF, Kindle
Read: 1344
Download

This edited volume describes cell-SELEX as the fundamental tool used to generate aptamer molecules for a wide range of applications in molecular medicine, bioanalysis and chemical biology. Easily integrated into the natural heterogeneous cell matrix, aptamers can be effectively used in theranostics, bioanalysis, environment detection and biomedical studies. The book gathers reviews that reflect the latest advances in the field of aptamers and consists in fourteen chapters demonstrating essential examples of these aptamers and aptamer-nanomaterial assemblies, depending on the types of applications and biological systems. It also includes a separate chapter on the utilization of aptamers in real clinics and what will be required to achieve this significant goal. The book will be both appealing and useful to a broad audience, including biologists, bioscientists, and clinicians whose interests range from chemistry and biomedical engineering to cell and molecular biology and biotechnology. Weihong Tan is a Distinguished Professor of Chemistry and Biomedical Engineering at Hunan University, China and also a University of Florida Distinguished Professor and V.T. and Louis Jackson Professor of Chemistry at the University of Florida, USA. Xiaohong Fang is a Professor at the Institute of Chemistry, Chinese Academy of Sciences, China.

Optical Antennas

Author: Mario Agio
Editor: Cambridge University Press
ISBN: 110701414X
File Size: 31,43 MB
Format: PDF, ePub
Read: 4352
Download

This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.

Understanding Biophotonics

Author: Kevin Tsia
Editor: Pan Stanford
ISBN: 9789814411776
File Size: 71,52 MB
Format: PDF, ePub
Read: 8878
Download

Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein–protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemical constituents can also be visualized with light and, thus, the corresponding physiological dynamics in living cells, tissues, and organisms in real time. Light can also be used to alter the properties and behaviors of biological matter, such as to damage cancerous cells by laser surgery or therapy, and manipulate the neuronal signaling in a brain network. Fueled by the innovations in photonic technologies in the past half century, biophotonics continues to play a ubiquitous role in revolutionizing basic life science studies as well as biomedical diagnostics and therapies. Advancements in biophotonics in the past few decades can be seen not only in biochemistry and cell/molecular biology, but also in numerous preclinical applications. Researchers around the world are searching for ways to bring biophotonic technologies into real clinical practices, particularly cellular and molecular optical imaging. Meanwhile, emerging technologies, such as laser nanosurgery and nanoplasmonics, have created new insights for understanding, monitoring, and even curing diseases on a molecular basis. This book presents the essential basics of optics and biophotonics to newcomers (senior undergraduates or postgraduate researchers) who are interested in this multidisciplinary research field. With stellar contributions from leading experts, the book highlights the major advancements in preclinical diagnostics using optical microscopy and spectroscopy, including multiphoton microscopy, super-resolution microscopy, and endomicroscopy. It also introduces a number of emerging techniques and toolsets for biophotonics applications, such as nanoplasmonics, microresonators for molecular detection, and subcellular optical nanosurgery.