Python Text Processing With Nltk 2 0 Cookbook

Author: Jacob Perkins
Editor: Packt Publishing Ltd
ISBN: 1849513619
Size: 12,75 MB
Format: PDF, ePub
Read: 708

The learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward. This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable.

Python 3 Text Processing With Nltk 3 Cookbook

Author: Jacob Perkins
Editor: CreateSpace
ISBN: 9781505492767
Size: 11,30 MB
Format: PDF, Docs
Read: 341

Over 80 practical recipes on natural language processing techniques using Python's NLTK 3.0 About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Learn how to do custom sentiment analysis and named entity recognition Work through the natural language processing concepts with simple and easy-to-follow programming recipes Who This Book Is For This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you've learned the limits of regular expressions the hard way, or you've realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful. In Detail This book will show you the essential techniques of text and language processing. Starting with tokenization, stemming, and the WordNet dictionary, you'll progress to part-of-speech tagging, phrase chunking, and named entity recognition. You'll learn how various text corpora are organized, as well as how to create your own custom corpus. Then, you'll move onto text classification with a focus on sentiment analysis. And because NLP can be computationally expensive on large bodies of text, you'll try a few methods for distributed text processing. Finally, you'll be introduced to a number of other small but complementary Python libraries for text analysis, cleaning, and parsing. This cookbook provides simple, straightforward examples so you can quickly learn text processing with Python and NLTK.

Natural Language Processing With Python Cookbook

Author: Krishna Bhavsar
Editor: Packt Publishing Ltd
ISBN: 178728347X
Size: 16,12 MB
Format: PDF, ePub
Read: 560

Learn the tricks and tips that will help you design Text Analytics solutions About This Book Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python Use dictionaries to create your own named entities using this easy-to-follow guide Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language Processing Who This Book Is For This book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended. What You Will Learn Explore corpus management using internal and external corpora Learn WordNet usage and a couple of simple application assignments using WordNet Operate on raw text Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more Understand regular expressions for pattern matching Learn to use and write your own POS taggers and grammars Learn to evaluate your own trained models Explore Deep Learning techniques in NLP Generate Text from Nietzsche's writing using LSTM Utilize the BABI dataset and LSTM to model episodes In Detail Natural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora. This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTKā€”the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques. By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python. Style and Approach This book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.

Computational Linguistics And Intelligent Text Processing

Author: Alexander Gelbukh
Editor: Springer
ISBN: 3642286046
Size: 14,98 MB
Format: PDF, Kindle
Read: 421

This two-volume set, consisting of LNCS 7181 and LNCS 7182, constitutes the thoroughly refereed proceedings of the 13th International Conference on Computer Linguistics and Intelligent Processing, held in New Delhi, India, in March 2012. The total of 92 full papers were carefully reviewed and selected for inclusion in the proceedings. The contents have been ordered according to the following topical sections: NLP system architecture; lexical resources; morphology and syntax; word sense disambiguation and named entity recognition; semantics and discourse; sentiment analysis, opinion mining, and emotions; natural language generation; machine translation and multilingualism; text categorization and clustering; information extraction and text mining; information retrieval and question answering; document summarization; and applications.