Three Dimensional Computer Vision

Author: Olivier Faugeras
Editor: MIT Press
ISBN: 9780262061582
Size: 10,81 MB
Format: PDF
Read: 898
Download

This monograph by one of the world's leading vision researchers provides a thorough,mathematically rigorous exposition of a broad and vital area in computer vision: the problems andtechniques related to three-dimensional (stereo) vision and motion. The emphasis is on usinggeometry to solve problems in stereo and motion, with examples from navigation and objectrecognition.Faugeras takes up such important problems in computer vision as projective geometry,camera calibration, edge detection, stereo vision (with many examples on real images), differentkinds of representations and transformations (especially 3-D rotations), uncertainty and methods ofaddressing it, and object representation and recognition. His theoretical account is illustratedwith the results of actual working programs.Three-Dimensional Computer Vision proposes solutions toproblems arising from a specific robotics scenario in which a system must perceive and act. Movingabout an unknown environment, the system has to avoid static and mobile obstacles, build models ofobjects and places in order to be able to recognize and locate them, and characterize its own motionand that of moving objects, by providing descriptions of the corresponding three-dimensionalmotions. The ideas generated, however, can be used indifferent settings, resulting in a general bookon computer vision that reveals the fascinating relationship of three-dimensional geometry and theimaging process.Olivier Faugeras is Research Director of the Computer Vision and Robotics Laboratoryat INRIA Sophia-Antipolis and a Professor of Applied Mathematics at the Ecole Polytechnique inParis.

Three Dimensional Computer Vision

Author: Yoshiaki Shirai
Editor: Springer Science & Business Media
ISBN: 3642824293
Size: 15,84 MB
Format: PDF, ePub, Docs
Read: 631
Download

The purpose of computer vision is to make computers capable of understanding environments from visual information. Computer vision has been an interesting theme in the field of artificial intelligence. It involves a variety of intelligent information processing: both pattern processing for extraction of meaningful symbols from visual information and symbol processing for determining what the symbols represent. The term "3D computer vision" is used if visual information has to be interpreted as three-dimensional scenes. 3D computer vision is more challenging because objects are seen from limited directions and some objects are occluded by others. In 1980, the author wrote a book "Computer Vision" in Japanese to introduce an interesting new approach to visual information processing developed so far. Since then computer vision has made remarkable progress: various rangefinders have become available, new methods have been developed to obtain 3D informa tion, knowledge representation frameworks have been proposed, geometric models which were developed in CAD/CAM have been used for computer vision, and so on. The progress in computer vision technology has made it possible to understand more complex 3 D scenes. There is an increasing demand for 3D computer vision. In factories, for example, automatic assembly and inspection can be realized with fewer con straints than conventional ones which employ two-dimensional computer vision.

Three Dimensional Machine Vision Using Image Defocus

Author: Tse-Chung Wei
Editor:
ISBN:
Size: 20,50 MB
Format: PDF, Docs
Read: 483
Download


Three Dimensional Machine Vision

Author: Takeo Kanade
Editor: Springer Science & Business Media
ISBN: 1461319811
Size: 14,22 MB
Format: PDF, Mobi
Read: 203
Download


3d Computer Vision

Author: Christian Wöhler
Editor: Springer Science & Business Media
ISBN: 3642017320
Size: 12,67 MB
Format: PDF, ePub
Read: 236
Download

This work provides an introduction to the foundations of three-dimensional c- puter vision and describes recent contributions to the ?eld, which are of methodical and application-speci?c nature. Each chapter of this work provides an extensive overview of the corresponding state of the art, into which a detailed description of new methods or evaluation results in application-speci?c systems is embedded. Geometric approaches to three-dimensional scene reconstruction (cf. Chapter 1) are primarily based on the concept of bundle adjustment, which has been developed more than 100 years ago in the domain of photogrammetry. The three-dimensional scene structure and the intrinsic and extrinsic camera parameters are determined such that the Euclidean backprojection error in the image plane is minimised, u- ally relying on a nonlinear optimisation procedure. In the ?eld of computer vision, an alternative framework based on projective geometry has emerged during the last two decades, which allows to use linear algebra techniques for three-dimensional scene reconstructionand camera calibration purposes. With special emphasis on the problems of stereo image analysis and camera calibration, these fairly different - proaches are related to each other in the presented work, and their advantages and drawbacks are stated. In this context, various state-of-the-artcamera calibration and self-calibration methods as well as recent contributions towards automated camera calibration systems are described. An overview of classical and new feature-based, correlation-based, dense, and spatio-temporal methods for establishing point c- respondences between pairs of stereo images is given.

Computer Vision

Author: Reinhard Klette
Editor: Springer
ISBN: 9789813083714
Size: 15,98 MB
Format: PDF, Mobi
Read: 853
Download

This book explores computer vision, describing the reconstruction of object surfaces and the analysis of distances between camera and objects. Fundamentals and algorithms are presented, including topics such as dynamic stereo analysis, shape from shading, photometric stereo analysis, and structural illumination. New research results in shape reconstruction and depth analysis are also included.

Machine Vision For Three Dimensional Scenes

Author: Herbert Freeman
Editor: Elsevier
ISBN: 0323150632
Size: 10,24 MB
Format: PDF
Read: 129
Download

Machine Vision for Three-Dimensional Scenes contains the proceedings of the workshop "Machine Vision - Acquiring and Interpreting the 3D Scene" sponsored by the Center for Computer Aids for Industrial Productivity (CAIP) at Rutgers University and held in April 1989 in New Brunswick, New Jersey. The papers explore the applications of machine vision in image acquisition and 3D scene interpretation and cover topics such as segmentation of multi-sensor images; the placement of sensors to minimize occlusion; and the use of light striping to obtain range data. Comprised of 14 chapters, this book opens with a discussion on 3D object recognition and the problems that arise when dealing with large object databases, along with solutions to these problems. The reader is then introduced to the free-form surface matching problem and object recognition by constrained search. The following chapters address the problem of machine vision inspection, paying particular attention to the use of eye tracking to train a vision system; images of 3D scenes and the attendant problems of image understanding; the problem of object motion; and real-time range mapping. The final chapter assesses the relationship between the developing machine vision technology and the marketplace. This monograph will be of interest to practitioners in the fields of computer science and applied mathematics.

Image Correlation For Shape Motion And Deformation Measurements

Author: Michael A. Sutton
Editor: Springer Science & Business Media
ISBN: 038778747X
Size: 12,71 MB
Format: PDF, Docs
Read: 379
Download

Image Correlation for Shape, Motion and Deformation Measurements provides a comprehensive overview of data extraction through image analysis. Readers will find and in-depth look into various single- and multi-camera models (2D-DIC and 3D-DIC), two- and three-dimensional computer vision, and volumetric digital image correlation (VDIC). Fundamentals of accurate image matching are described, along with presentations of both new methods for quantitative error estimates in correlation-based motion measurements, and the effect of out-of-plane motion on 2D measurements. Thorough appendices offer descriptions of continuum mechanics formulations, methods for local surface strain estimation and non-linear optimization, as well as terminology in statistics and probability. With equal treatment of computer vision fundamentals and techniques for practical applications, this volume is both a reference for academic and industry-based researchers and engineers, as well as a valuable companion text for appropriate vision-based educational offerings.

Digital Color Image Processing

Author: Andreas Koschan
Editor: John Wiley & Sons
ISBN: 0470230355
Size: 11,21 MB
Format: PDF, ePub, Mobi
Read: 390
Download

An introduction to color in three-dimensional image processing and the emerging area of multi-spectral image processing The importance of color information in digital image processing is greater than ever. However, the transition from scalar to vector-valued image functions has not yet been generally covered in most textbooks. Now, Digital Color Image Processing fills this pressing need with a detailed introduction to this important topic. In four comprehensive sections, this book covers: The fundamentals and requirements for color image processing from a vector-valued viewpoint Techniques for preprocessing color images Three-dimensional scene analysis using color information, as well as the emerging area of multi-spectral imaging Applications of color image processing, presented via the examination of two case studies In addition to introducing readers to important new technologies in the field, Digital Color Image Processing also contains novel topics such as: techniques for improving three-dimensional reconstruction, three-dimensional computer vision, and emerging areas of safety and security applications in luggage inspection and video surveillance of high-security facilities. Complete with full-color illustrations and two applications chapters, Digital Color Image Processing is the only book that covers the breadth of the subject under one convenient cover. It is written at a level that is accessible for first- and second-year graduate students in electrical and computer engineering and computer science courses, and that is also appropriate for researchers who wish to extend their knowledge in the area of color image processing.

Handbook Of Computational Intelligence In Manufacturing And Production Management

Author: Laha, Dipak
Editor: IGI Global
ISBN: 1599045842
Size: 17,65 MB
Format: PDF, ePub, Docs
Read: 815
Download

During the last two decades, computer and information technologies have forced great changes in the ways businesses manage operations in meeting the desired quality of products and services, customer demands, competition, and other challenges. The Handbook of Computational Intelligence in Manufacturing and Production Management focuses on new developments in computational intelligence in areas such as forecasting, scheduling, production planning, inventory control, and aggregate planning, among others. This comprehensive collection of research provides cutting-edge knowledge on information technology developments for both researchers and professionals in fields such as operations and production management, Web engineering, artificial intelligence, and information resources management.